

2N6796

High-reliability discrete products and engineering services since 1977

N- CHANNEL MOSFET

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS.

Rating	Symbol	Value	Unit	
Operating and Storage Temperature Range	TJ, Tstg	-55 to +150	°C	
Thermal Resistance Junction To Case	Rejc	5.0	°C/W	
Total Power Dissipation @ T _A = 25°C	D	0.8	W	
Derate above 25°C (1)	P _D	25	mW/°C	
Drain Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current @ T _c = +25°C $^{(2)}$	I _{D1}	8.0	А	
Drain Current @ $T_c = +100^{\circ}C^{(2)}$	I _{D2}	5.0	A	
Off State Current(Peak Total Value) (3)	I _{DM}	32	A(pk)	
Source Current	ls	8.0	A	

Note 1: Derate linearly 0.2W/°C for T_C > +25°C

Note 2: The following formula derives the maximim theoretic I_D limit. I_D is also limited by poackage and internal wires and may be limited due to pin diameter. $I_D = v \underline{T}_{\underline{I(max)}} - \underline{T}_{\underline{C}}$

R_{0JC} x R_{DS(on)} @ T_{J(max)}

Note 3: I_{DM} = 4 x I_{D1} as calculated in Note 2

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	
Drain-Source Breakdown Voltage V _{GS} = 0V, I _D = 1.0mA	V _{(BR)DSS}	100	-	V
Gate-Source Voltage (Threshold)				
$V_{DS} \ge V_{GS}$. $I_D = 0.25 mA$	V _{GS(th)1}	2.0	4.0	v
$V_{DS} \ge V_{GS}$. $I_D = 0.25 \text{mA}$, $T_J = +125^{\circ}\text{C}$	V _{GS(th)2}	1.0	-	v
$V_{DS} \ge V_{GS}$. I _D = 0.25mA, T _J = -55°C	V _{GS(th)3}	-	5.0	
Gate Current				
$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS1}	-	±100	nA
$V_{GS} = \pm 20V, V_{DS} = 0V, T_J = +125^{\circ}C$	I _{GSS2}	-	±200	
Drain Current				
$V_{GS} = 0V, V_{DS} = 80V$	I _{DSS1}	-	25	μΑ
Drain Current				
V _{GS} = 0V, V _{DS} = 80V, T _J = +125°C	I _{DSS2}	-	0.25	mA
Static Drain-Source On-State Resistance				<u>_</u>
V_{GS} = 10V, I_D = 5.0A pulsed	r _{DS(on)1}	-	0.18	Ω
Static Drain-Source On-State Resistance				<u>_</u>
V_{GS} = 10V, I_D = 8.0A pulsed	۲ _{DS(on)} 2	-	0.195	Ω
Static Drain-Source On-State Resistance T _J = 125°C				2
V_{GS} = 10V, I_D = 5.0A pulsed	r _{DS(on)1}	-	0.35	Ω
Diode Forward Voltage	N			V
$V_{GS} = 0V$, $I_D = 8.0A$ pulsed	V _{SD}	-	1.5	

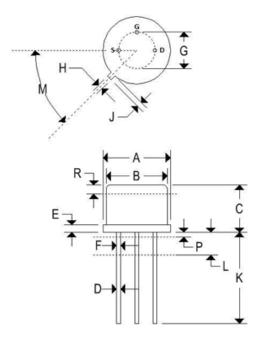
Rev. 20221021

High-reliability discrete products and engineering services since 1977

2N6796

N- CHANNEL MOSFET

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristics	Symbol	Min	Max	Unit	
DYNAMIC CHARACTERISTICS					
On-State Gate Charge	Q _{g(on)}			nC	
$V_{GS} = 10V$, $I_D = 8.0A$, $V_{DS} = 50V$	⊂ (g(on)	-	28.51	lic	
Gate to Source Charge	Qg			nC	
$V_{GS} = 10V$, $I_D = 8.0A$, $V_{DS} = 50V$	Qg	-	6.34		
Gate to Drain Charge	Q_{gd}			nC	
$V_{GS} = 10V$, $I_D = 8.0A$, $V_{DS} = 50V$	Qgd	-	16.59	lic	
SWITCHING CHARACTERISTICS					
Turn-On Delay Time				ns	
I_D = 8.0A, V_{GS} = +10V. R_G = 7.5 Ω , V_{DD} = 30V	t _{d(on)}	-	30	115	
Rinse Time				ns	
I_D = 8.0A, V_{GS} = +10V. R_G = 7.5 Ω , V_{DD} = 30V	tr	t _r -		115	
Turn-off Delay Time0				nc	
I_D = 8.0A, V_{GS} = +10V. R_G = 7.5 Ω , V_{DD} = 30V	t _{d(off)}	-	40	ns	
Fall Time				ns	
I_D = 8.0A, V_{GS} = +10V. R_G = 7.5 Ω , V_{DD} = 30V	t _f	-	45	5	
Diode Reverse Recovery Time	+		ns		
Di/dt \leq 100A/ μ s, V _{DD} = \leq 50V, I _F = 8.0A	trr	-	300	115	

High-reliability discrete products and engineering services since 1977

MECHANICAL CHARACTERISTICS

Case:	TO-205 low-profile	
Marking:	Alpha-numeric	
Pin out:	See below	

	TO-205 LOW PROFILE				
	Inches		Millimeters		
	Min	Max	Min	Max	
Α	0.350	0.370	8.890	9.400	
В	0.315	0.335	8.000	8.510	
c	-	0.180	-	4.57	
D	0.016	0.021	0.406	0.533	
Е	0.009	0.125	0.2269	3.180	
F	0.016	0.019	0.406	0.533	
G	0.190	0.210	4.830	5.33	
н	0.028	0.034	0.711	0.864	
J	0.029	0.040	0.737	1.020	
K	0.500	-	12.700	-	
L	0.250	-	6.350	-	
М	45° NOM		45° NOM		
Ρ	-	0.050	-	1.270	
q	90° NOM		90° NOM		
R	0.100	-	2.540	-	

2N6796

N- CHANNEL MOSFET

High-reliability discrete products and engineering services since 1977

2N6796

N- CHANNEL MOSFET

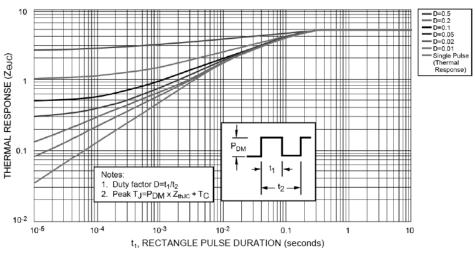
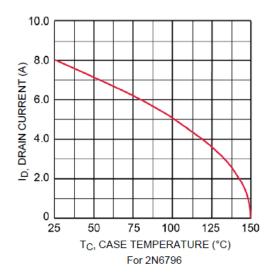
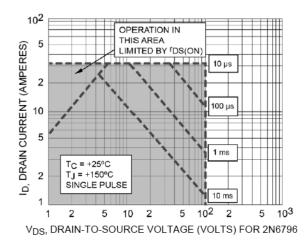




FIGURE 1 – Normalized Transient Thermal Impedance

