

3N201-3N203

DUAL GATE MOSFET VHF AMPLIFIER

High-reliability discrete products and engineering services since 1977

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain-source voltage	V _{DS}	25	Vdc	
Drain gata voltaga	V _{DG1}	20	Vdc	
Drain-gate voltage	V _{DG2}	50	Vuc	
Drain current	ID	50	mAdc	
Color annual	I _{G1}	110	mAdc	
Gate current	I _{G2}	±10		
Total device dissipation @ $T_A = 25^{\circ}C$	D	360	mW	
Derate above 25°C	PD	2.4	mW/°C	
Total device dissipation @ T _c = 25°C	D	1.2	W	
Derate above 25°C	PD	8.0	mW/°C	
Lead temperature	ΤL	300	°C	
Junction temperature range	TJ	-65 to 175	°C	
Storage temperature range	T _{stg}	-65 to 175	°C	

ELECTRICAL CHARACTERISTICS (T_c = 25°C)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-source breakdown voltage		V _{(BR)DSX}				Vdc
$(I_D = 10\mu Adc, V_S = 0, V_{G1S} = V_{G2S} = -5.0Vdc)$			25	-	-	
Gate 1-source breakdown voltage (1)		V				Vdc
$(I_{G1} = \pm 10 \text{mAdc}, V_{G2S} = V_{DS} = 0)$		V (BR)G1SO	±6.0	±12	±30	Vuc
Gate 2-source breakdown voltage (1)						Vdc
$(I_{G2} = \pm 10 \text{mAdc}, V_{G1S} = V_{DS} = 0)$		V(BR)G2SO	±6.0	±12	±30	
Gate 1 leakage current						
$(V_{G1S} = \pm 5.0Vdc, V_{G2S} = VDS = 0)$		I _{G1SS}	-	±0.040	±10	nAdc
$(V_{G1S} = -5.0Vdc, V_{G2S} = VDS = 0, T_A = 150^{\circ}C)$			-	-	-10	μAdc
Gate 2 leakage current						
$(V_{G2S} = \pm 5.0Vdc, V_{G1S} = V_{DS} = 0)$		I _{G2SS}	-	±0.050	±10	nAdc
$(V_{G2S} = -5.0Vdc, V_{G1S} = V_{DS} = 0, T_A = 150^{\circ}C)$			-	-	-10	μAdc
Gate 1 to source cutoff voltage		Maria m				Vdc
$(V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_{D} = 20\mu Adc)$		V G1S(off)	-0.5	-1.5	-5.0	vuc
Gate 2 to source cutoff voltage	V _{G2S(off)}					Vdc
$(V_{DS} = 15Vdc, V_{G1S} = 0, I_{D} = 20\mu Adc)$			-0.2	-1.4	-5.0	Vuc
ON CHARACTERISTICS						
Zero-gate voltage drain current (2)						
$(V_{DS} = 15Vdc, V_{G1S} = 0, V_{G2S} = 4.0Vdc)$	3N201, 3N202	I _{DSS}	6.0	13	30	mAdc
	3N203		3.0	11	15	

FIECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$)

3N201-3N203

DUAL GATE MOSFET VHF AMPLIFIER

Characteristic		Symbol	Min	Тур	Max	Unit
SMALL SIGNAL CHARACTERISTICS						
Forward transfer admittance ⁽³⁾						
$(V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, V_{G1S} = 0, f = 1.0kHz)$	3N201, 3N202	Y _{fs}	8.0	12.8	20	mmhos
	3N203		7.0	12.5	15	
Input capacitance		C				nE
(V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = I_{DSS} , f = 1.0MHz)		Ciss	-	3.3	-	μr
Reverse transfer capacitance		C				۵ ۲
$(V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = 10mAdc, f = 1.0MHz)$		Crss	0.005	0.014	0.03	рг
Output capacitance		6				۵ ۲
(V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = I_{DSS} , f = 1.0MHz)		Coss	-	1.7	-	рг
FUNCTIONAL CHARACTERISTICS						
Noise figure						
(V _{DD} = 18Vdc, V _{GG} = 7.0Vdc, f = 200MHz)	3N201	NF	-	1.8	4.5	dB
$(V_{DD} = 18Vdc, V_{GG} = 6.0Vdc, f = 45MHz)$	3N203		-	5.3	6.0	
Common source power gain						
(V _{DD} = 18Vdc, V _{GG} = 7.0Vdc, f = 200MHz)	3N201	G _{ps}	15	20	25	dP
(V _{DD} = 18Vdc, V _{GG} = 6.0Vdc, f = 45MHz)	3N203		20	25	30	uв
$(V_{DD} = 18Vdc, f_{LO} = 245MHz, f_{RF} = 200MHz)$	3N202	G _c (5)	15	19	25	
Bandwidth						
$(V_{DD} = 18Vdc, V_{GG} = 7.0Vdc, f = 200MHz)$	3N201	D	5.0	-	9.0	
$(V_{DD} = 18Vdc, f_{LO} = 245MHz, f_{RF} = 200MHz)$	3N202	D _W	4.5	-	7.5	141112
(V _{DD} = 18Vdc, V _{GG} = 6.0Vdc, f = 45MHz)	3N203		3.0	-	6.0	
Gain control gate-supply voltage (4)						
$(V_{DD} = 18Vdc, \Delta G_{ps} = -30dB, f = 200MHz)$	3N201	V _{GG(GC)}	0	-1.0	-3.0	Vdc
$(V_{DD} = 18Vdc, \Delta G_{ps} = -30dB, f = 45MHz)$	3N203		0	-0.6	-3.0	

Note 1: All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly. Note 2: Pulse test: pulse width = 300µs. Duty cycle ≤ 2.0%. Note 3: This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating.

Note 4: Δ Gps is defined as the change from the value at V_{GG} = 7.0V and V_{GG} = 6.0V.

Note 5: Power gain conversion.

MECHANICAL CHARACTERISTICS

Case:	TO-72
Marking:	Body painted, alpha-numeric
Pin out:	See below

	TO-72					
	Inches		Millimeters			
	Min	Max	Min	Max		
А		0.230		5.840		
В	(2)	0.195	24)	4.950		
С		0.210		5.330		
D	(4)	0.021	38	0.530		
Е	-	0.030	14	0.760		
F	-	0.019	(H)	0.480		
G	0.100 BSC		2.540	BSC		
Н		0.046	•	1.170		
J	-	0.048		1.220		
Κ	0.500		12.700			
L	0.250	х.	1860 L	6.350		
М	45° BSC		45° BSC			
N	0.050	0.050 BDC		BSC		
Р	3(2)	0.050	(4)	1.270		

3N201-3N203

DUAL GATE MOSFET VHF AMPLIFIER

3N201-3N203

DUAL GATE MOSFET VHF AMPLIFIER

FIGURE 1 - 200-MHz TEST CIRCUIT SCHEMATIC FOR 3N201 VGG 0 +18 V 0.001 µF REC TUT \$10 K 560 0.001 # -16 G2 0.001 pF T G From 75-Ω Source) |(-----0.001 μF 0.001 ¥ c1 \$110 k 8.2 pF 270 F C2 39 pF 7 C1 4.0 30 pF, ERIE Variable Ceramic, Set for \approx 22 pF C2 4.0 30 pF, ERIE Variable Ceramic, Set for \approx 10 pF L1 4 Turns, #14 AWG Cooper, 1/4" I.D., 1/6" Pitch L3 Turns, #14 AWG Cooper, 1/4" I.D., 1/6" Pitch RFC DELEVAN No. 153712, 1.0 μ H FIGURE 2 - 200-MHz-to-45-MHz TEST CIRCUIT SCHEMATIC FOR 3N202 245-MHz Local Oscillator Input(1) 0 2.2 pF From 50-Ω Source ₹56 TUT 45-MHz IF Output G2 1 G1 1 200-MHz RF Input From 75-Ω Source -0 0 16 Tu 5 Turns To 75-Ω Load 0.001 0.001 2.2 270 # c1 10 * \$ 27 nF μF 0.00 μF 110 k 0 + 18 V 91 k 1.5-7.0 pF, ERIE Variable Ceramic, Set for ≈ 4.7 pF 4 Turns, #14 AWG Copper, 1/4" 1.D., 1/6" Pitch (1) Amplitude at Input from Local Oscillator ≈ 3 V RMS C1 L1

3N201-3N203

DUAL GATE MOSFET VHF AMPLIFIER

TYPICAL CHARACTERISTICS

3N201-3N203

DUAL GATE MOSFET VHF AMPLIFIER

FIGURE 9 – SMALL-SIGNAL COMMON-SOURCE GATE-ONE INPUT AND OUTPUT CAPACITANCE versus

TYPICAL CHARACTERISTICS

FIGURE 11 - COMMON-SOURCE POWER GAIN AND

FIGURE 12 - COMMON-SOURCE POWER GAIN versus DRAIN SUPPLY CURRENT - 3N201

.

Rev. 20120705

3N201-3N203

DUAL GATE MOSFET VHF AMPLIFIER

TYPICAL CHARACTERISTICS

FIGURE 17 -- SMALL-SIGNAL GATE ONE OUTPUT ADMITTANCE versus FREQUENCY

