

2N6338, 2N6341

NPN SILICON POWER TRANSISTORS

FEATURES:

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number
- Available Non-RoHS (standard) or RoHS compliant (add PBF suffix)

MAXIMUM RATINGS

Ratings	Symbol	2N6338	2N6341	Unit
Collector-Base Voltage	V _{CBO}	120 180		V
Collector-Emitter Voltage	V _{CEO}	100 150		V
Emitter-Base Voltage	V _{EBO}	6		V
Collector Current	I _C	25		Α
Base Current	I _B	10		Α
Total Power Dissipation @ T _C = 25°C	Pp	200		W
Derate above 25°C	P _D	1.14		W/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-65 to +200		°C
Maximum Thermal Resistance, Junction to Case	R _{eJC}	0.875		°C/W

ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•		ı		•
Collector-Emitter Sustaining Voltage (1)	2N6338	V _{CEO(sus)}	100	-	V
$(I_C = 50 \text{ mA}, I_B = 0)$	2N6341		150	-	
Collector Cutoff Current		I _{CEO}			uA
$(V_{CE} = 50 \text{ V}, I_B = 0)$	2N6338		-	50	
$(V_{CE} = 75 \text{ V}, I_B = 0)$	2N6341		-	50	
Collector Cutoff Current		I _{CEX}			
(V_{CE} = Rated V_{CEO} , $V_{EB(OFF)}$ = 1.5 V)			-	10	uA
(V_{CE} = Rated V_{CEO} , $V_{EB(OFF)}$ = 1.5 V, T_C = 150°C)			-	1.0	mA
Collector Cutoff Current				10	
$(V_{CB} = Rated V_{CB}, I_E = 0)$		I _{CBO}	-	10	uA
Emitter Cutoff Current				100	
$(V_{BE} = 6.0 \text{ V}, I_{C} = 0)$		I _{EBO}	-	100	uA
ON CHARACTERISTICS ⁽¹⁾					
DC Current Gain		h _{fe}			-
$(I_C = 0.5A, V_{CE} = 2.0V)$			50	-	
$(I_C = 10A, V_{CE} = 2.0V)$			30	120	
$(I_C = 25A, V_{CE} = 2.0V)$			12	-	
Collector-Emitter Saturation Voltage		$V_{\text{CE(sat)}}$			V
$(I_C = 10 \text{ A}, I_B = 1.0 \text{ A})$			-	1.0	
$(I_C = 25 A, I_B = 2.5 A)$			-	1.8	
Base-Emitter Saturation Voltage					
$(I_C = 10 A, I_B = 1.0 A)$		$V_{BE(sat)}$	-	1.8	V
$(I_C = 25 \text{ A}, I_B = 2.5 \text{ A})$			-	2.5	
Base-Emitter On Voltage		V		1.8	V
$(I_C = 10 \text{ A}, V_{CE} = 2.0 \text{ V})$		$V_{BE(on)}$	_	1.0	V

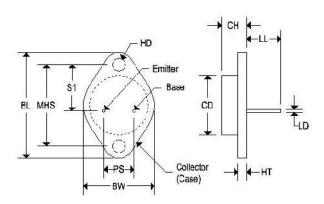
2N6338, 2N6341

NPN SILICON POWER TRANSISTORS

DYNAMIC CHARACTERISTICS					
Current Gain–Bandwidth Product ⁽²⁾ ($I_C = 1.0A$, $V_{CE} = 10$ V, $f_{test} = 10$ MHz)	f _⊤	40	-	MHz	
Output Capacitance $(V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz})$	C _{OB}	-	300	pF	
SWITCHING CHARACCTERISTICS					
Rise Time $(V_{CC} \approx 80 \text{ V}, I_C = 10A, I_{B1} = 1.0A, V_{BE(off)} = -6.0V)$	t _r	-	0.3	us	
Storage Time $(V_{CC} \approx 80 \text{ V}, I_C = 10A, I_{B1} = I_{B2} = 1.0A)$	ts	-	1.0	us	
Fall Time $(V_{CC} \approx 80 \text{ V}, I_C = 10A, I_{B1} = I_{B2} = 1.0A)$	t _f	-	0.25	us	

Note 1: Pulse test = 300µs, Duty Cycle ≤ 2%.

Note 2: $f_T = |h_{fe}| * f_{test}$.



2N6338, 2N6341

NPN SILICON POWER TRANSISTORS

MECHANICAL CHARACTERISTICS

Case	ТО-3
Marking	Alpha-numeric
Pin out	See below

	Dimensions			
	TO-3			
	Inches		Millimeters	
	Min	Max	Min	Max
BL	1.550 REF		39.37 REF	
CD	-	0.830	-	21.08
СН	0.250	0.335	6.35	8.51
LL	0.440	0.480	11.18	12.19
BW	-	1.050	-	26.67
LD	0.036	0.043	0.920	1.090
нт	0.055	0.070	1.40	1.77
MHS	1.187 BSC		30.15 BSC	
SI	0.665 BSC		16.89 BSC	
HD	0.131	0.188	3.33	4.77
PS	0.430 BSC		10.92	

Note:

^{1.} Dimensions listed as BSC (Basic Spacing Between Centers) have tolerance of 0.005 inches from center.

2N6338, 2N6341

NPN SILICON POWER TRANSISTORS

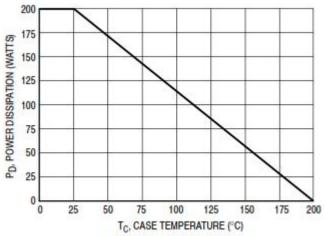
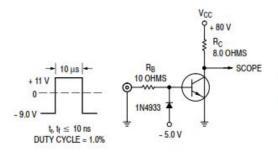



Figure 1. Power Derating

NOTE: For information on Figures 3 and 6, R_B and R_C were varied to obtain desired test conditions.

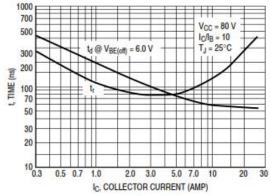


Figure 3. Turn-On Time

Figure 2. Switching Time Test Circuit

D = 0.50.2 $\theta_{JC} = r(t) \theta_{JC}$ $\theta_{JC} = 0.875^{\circ}C/W MAX$ 0.05 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT to $T_{J(pk)} - T_C = P_{(pk)} \Theta_{JC}(t)$ SINGLE PULSE DUTY CYCLE, D = t1/t2 0.01 0.2 0.3 0.02 0.03 0.05 2.0 3.0 t. TIME (ms)

Figure 4. Thermal Response

2N6338, 2N6341

NPN SILICON POWER TRANSISTORS

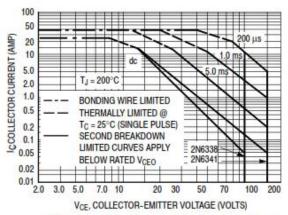


Figure 5. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C–V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 200^{\circ} C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 200^{\circ} C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

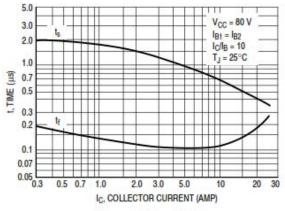


Figure 6. Turn-Off Time

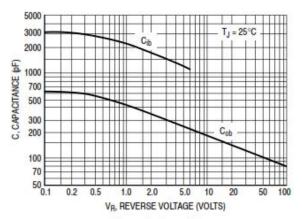
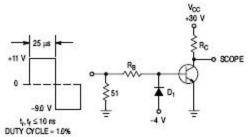



Figure 7. Capacitance

2N6338, 2N6341

NPN SILICON POWER TRANSISTORS

REAND RC ARE VARIED TO OBTAIN DESIRED CURRENT LEVELS

D1 MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE Ig ~ 100 mA MSD6100 USED BELOW Ig ~ 100 mA

Figure 4. Switching Time Test Circuit

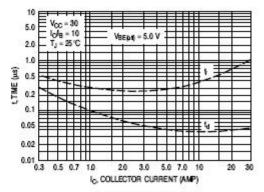


Figure 5. Turn-On Time

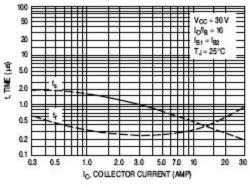


Figure 6. Turn-Off Time

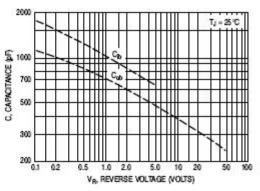
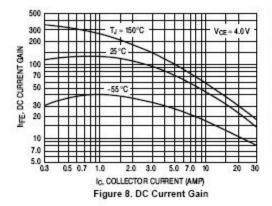
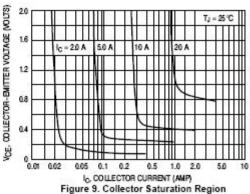




Figure 7. Capacitance

