

High-reliability discrete products and engineering services since 1977

1N5802-1N5806

HIGH EFFICIENCY RECTIFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Working peak reverse voltage			
1N5802		50	
1N5803	V_{RWM}	75	V
1N5804	V _{RWM}	100	V
1N5805		125	
1N5806		150	
Forward surge current (1)	I _{FSM}	35	Α
Average rectified output current @ T _L = 75°C at 3/8" lead length (2)	I ₀₁	2.5	Α
Average rectified output current @ T _A = 55°C at 3/8" lead length (3)	I ₀₂	1.0	Α
Capacitance @ $V_R = 10V$, $f = 1MHz$, $V_{sig} = 50mV(p-p)$	С	25	pF
Reverse recovery time (4)	t _{rr}	25	ns
Solder temperature @ 10 s	T _{SP}	260	°C
Junction and storage temperature range	T _J , T _{stg}	-65 to +175	°C
Thermal resistance junction to lead (L = 0.375")	R _{OJL}	36	°C/W

Note 1: $T_A = 25^{\circ}C$ @ $I_O = 1.0A$ and V_{RWM} for 10 8.3ms surges at 1 minute intervals.

Note 2: I_{01} is rated at 2.5A @ $T_L = 75^{\circ}$ C at 3/8" lead length. Derate at 25mA/°C for T_L above 75°C.

Note 3: l_{02} is rated at 1.0A @ T_A = 55°C for PC boards where thermal resistance from mounting point t ambient is sufficiently controlled (R_{DIX} < 154°C/W) where $T_{I(max)}$ 175°C is not exceeded.

Derate at 8.33mA/°C for T_A above 55°C. Note 4: $I_F = 0.5A$, $I_{RM} = 0.5A$, $I_{R(REC)} = 0.05A$.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Part number	Minimum breakdown voltage @ 100μA	Maximum forward voltage V_{FM}		Maximum reverse current @ V _{RWM}		Maximum surge current ⁽⁵⁾	Maximum reverse recovery time ⁽⁶⁾	Thermal impedance @ t _H = 10ms ⁽⁷⁾
	V _(BR)					I _{FSM}	t _{rr}	Z _{eJX}
	Volts	Vo	olts	Ļ	μΑ			9C // A/
		I _F = 1.0A	I _F = 2.5A	25°C	125°C	Amps	ns	°C/W
1N5802	60	0.875	0.975	1	175	35	25	4.0
1N5803	85	0.875	0.975	1	175	35	25	4.0
1N5804	110	0.875	0.975	1	175	35	25	4.0
1N5805	135	0.875	0.975	1	175	35	25	4.0
1N5806	160	0.875	0.975	1	175	35	25	4.0

Note 5: $T_A=2.5^{\circ}C$ @ $I_O=1.0A$ and V_{RWM} for ten 8.3ms surges at 1 minute intervals. Note 6: $I_F=0.5A$, $I_{RM}=0.5A$, $I_{R(REC)}=0.05A$. Note 7: See figure 1 for thermal impedance curve.

High-reliability discrete products and engineering services since 1977

1N5802-1N5806

HIGH EFFICIENCY RECTIFIERS

MECHANICAL CHARACTERISTICS

Case	Digi A
Marking	Alpha Numeric
Polarity	Cathode Band

	Digi A					
	Inc	hes	Millimeters			
	Min	Max	Min	Max		
BD	-	0.095	±.	2.413		
BL	-	0.180	4	4.572		
LD	0.028	0.032	0.711	0.813		
LL	0.700	-	17.800	-		

High-reliability discrete products and engineering services since 1977

1N5802-1N5806

HIGH EFFICIENCY RECTIFIERS

FIGURE 1 Maximum Thermal Impedance

FIGURE 2

Rectifier Power vs I_O (Average Forward Current)

High-reliability discrete products and engineering services since 1977

1N5802-1N5806

HIGH EFFICIENCY RECTIFIERS

FIGURE 3
Thermal Resistance vs FR4 Pad Area At Ambient
PCB horizontal (for each pad) with 1, 2, and 3 oz copper

FIGURE 4
Forward Voltage vs Forward Current