

High-reliability discrete products and engineering services since 1977

MBR6035-MBR6045

60 A SCHOTTKY RECTIFIERS

FEATURES

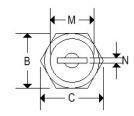
- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

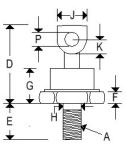
MAXIMUM RATINGS

Rating	Symbol	MBR6035	MBR6045	Unit
Peak repetitive reverse voltage	V _{RRM}			
Working peak reverse voltage	V_{RWM}	35	45	V
DC blocking voltage	V_R			
Peak repetitive forward current (Rated V _R , square wave, 20kHz)	I _{FRM}	120 @ T _C = 100°C		Α
Average rectified forward current (Rated V _R)	Io	60 @ T _C = 100°C		Α
Peak repetitive reverse surge current (2.0µs, 1.0kHz)	I _{RRM}	2.0		Α
Non-repetitive peak surge current				
(surge applied at rated load conditions, halfwave, single phase, 60Hz)	I _{FSM}	800		А
Operating junction temperature range	Tı	-65 to +150		°C
Storage temperature range	T _{stg}	-65 to +175		°C
Voltage rate of change (Rated V _R)	dv/dt	1000		V/µs
Maximum thermal resistance				°C/W
Junction to case	R _{OJC} 1.0		1.0	C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

December	Symbol	MBR6035	MBR6045	l lock
Parameter		Typical	Maximum	Unit
Instantaneous forward voltage (1)				
$(I_F = 60A, T_C = 25^{\circ}C)$		0.65	0.70	V
$(I_F = 60A T_C = 125^{\circ}C)$	V _F	0.57	0.60	V
$(I_F = 120A, T_C = 125^{\circ}C)$		0.70	0.76	
Instantaneous reverse current (1)				
(Rated dc voltage, $T_C = 25$ °C)	I _R	0.1	0.3	mA
(Rated dc voltage, $T_C = 125$ °C)		55	100	
Capacitance ($V_R = 1.0 \text{Vdc}$, $100 \text{kHz} \le f \le 1.0 \text{MHz}$)	Ct	3000	3700	pF


High-reliability discrete products and engineering services since 1977

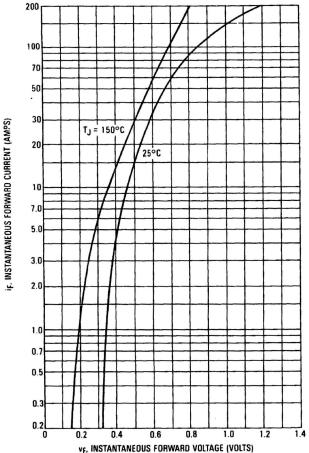

MBR6035-MBR6045

60 A SCHOTTKY RECTIFIERS

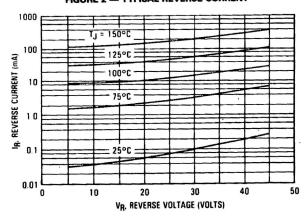
MECHANICAL CHARACTERISTICS

Case	DO-5(R)	
Marking	Alpha-numeric	
Normal polarity	Cathode is stud	
Reverse polarity	Anode is stud (add "R" suffix)	

	DO-5(R)					
	Inches		Millin	neters		
	Min	Max	Min	Max		
Α	1/4-28 UNF2A threads					
В	0.669	0.688	16.990	17.480		
С	-	0.794	-	20.160		
D	-	1.000	-	25.400		
E	0.422	0.453	10.720	11.510		
F	0115	0.200	2.920	5.080		
G	-	0.450	-	11.430		
Н	0.220	0.249	5.580	6.320		
J	0.250	0.375	6.350	9.530		
K	0.156	-	3.960	-		
М	-	0.667	-	16.940		
N	0.030	0.080	0.760	2.030		
Р	0.140	0.175	3.560	4.450		



High-reliability discrete products and engineering services since 1977


MBR6035-MBR6045

60 A SCHOTTKY RECTIFIERS

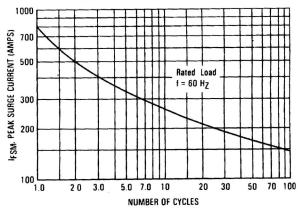
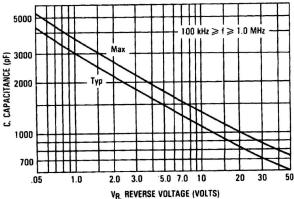

FIGURE 1 — TYPICAL FORWARD VOLTAGE

FIGURE 2 — TYPICAL REVERSE CURRENT

FIGURE 3 - MAXIMUM SURGE CAPABILITY

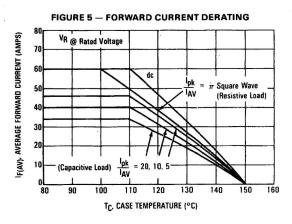


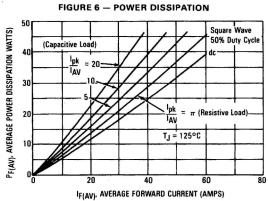
NOTE 1 HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

FIGURE 4 — CAPACITANCE



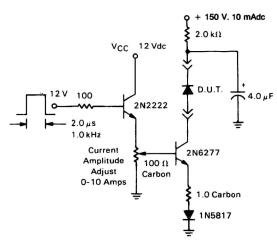


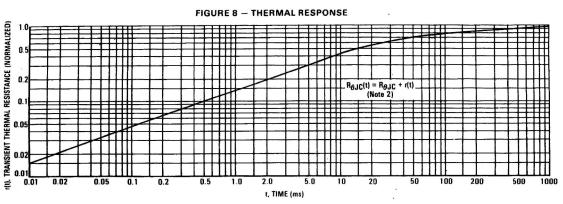
High-reliability discrete products and engineering services since 1977

MBR6035-MBR6045

60 A SCHOTTKY RECTIFIERS

NOTE 2 DUTY CYCLE, D = tp/t1 PEAK POWER, Ppk, is peak of an


To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended:
The temperature of the case should be measured using a thermocouple placed on the case. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C, the junction temperature may be


determined by: $\begin{array}{ll} T_J = T_C + \Delta T_{JC} \\ \text{where } \Delta T_C \text{ is the increase in junction temperature above temperature, it may be determined by:} \end{array}$

 $\Delta T_{JC} = P_{pk} \cdot R_{\theta JC}(D + (1 - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1))$ where r(t) = normalized value of transient thermal resistance at time, t, from

Figure 8, i.e.: $r(t_1+t_p)$ = normalized value of transient thermal resistance at time t_1+t_p

FIGURE 7 - TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT

