

MCR72 SERIES

SILICON CONTROLLED RECTIFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS.

Rating	Symbol	Value	Unit
Peak repetitive off-state voltage ⁽¹⁾			
$(T_J = -40 \text{ to } +110^{\circ}\text{C}, \text{ sine wave, } 50 \text{ to } 60\text{Hz}, \text{ gate open})$			
MCR72-1		25	
MCR72-2		50	
MCR72-3	V_{DRM}	100	V
MCR72-4	V_{RRM}	200	V
MCR72-5		300	
MCR72-6		400	
MCR72-7		500	
MCR72-8		600	
On-state RMS current (180° conduction angles, $T_C = 83$ °C)	I _{T(RMS)}	8.0	Α
Peak non-repetitive surge current			A
(half-cycle, sine wave, 60 Hz, $T_J = 110$ °C)	I _{TSM}	100	А
Circuit fusing consideration (t = 8.3ms)	l²t	40	A^2s
Forward peak gate voltage (t $\leq 10 \mu s$, $T_C = 83 ^{\circ}C$)	V_{GM}	±5.0	V
Forward peak gate current (t $\leq 10 \mu s$, $T_c = 83 ^{\circ} C$)	I _{GM}	1.0	Α
Forward peak gate power (pulse width $\leq 10\mu s$, $T_C = 83^{\circ}C$)	P _{GM}	5.0	W
Average gate power (t = 8.3 ms, $T_C = 83$ °C)	P _{G(AV)}	0.75	W
Operating junction temperature range	T,	-40 to +110	°C
Storage temperature range	T _{stg}	-40 to +150	°C
Mounting torque	-	8.0	In. lb.

Note 1: V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Maximum	Unit
Thermal resistance, junction to case	R _{eJC}	2.2	°C/W
Thermal resistance, junction to ambient	$R_{\Theta JA}$	60	°C/W
Lead solder temperature (lead length 1/8" from case, 10s max)	TL	260	°C

MCR72 SERIES

SILICON CONTROLLED RECTIFIERS

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-			
Peak forward or reverse blocking current ⁽²⁾					
$(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}, R_{GK} = 1 \text{k}\Omega)$	I _{DRM} ,				
$T_C = 25$ °C	I _{RRM}	-	-	10	μΑ
$T_C = 110$ °C		-	-	500	
ON CHARACTERISTICS					
Peak forward on-state voltage $(I_{TM} = 16A, pulse width \le 1ms, duty cycle \le 2\%)$	V _{TM}	-	1.7	2.0	V
Gate trigger current (continuous dc) ⁽³⁾ $(V_D = 12V, R_L = 100\Omega)$	I _{GT}	-	30	200	μΑ
Gate trigger voltage (continuous dc) $^{(3)}$ (V _D = 12V, R _L = 100 Ω)	V _{GT}	-	0.5	1.5	V
Gate non-trigger voltage $(V_D=12V,R_L=100\Omega,T_J=110^{\circ}C)$	V_{GD}	0.1	-	-	V
Holding current (V _D = 12V, gate open, initiating current = 200mA)	I _H	-	-	6.0	mA
Gate controlled turn-on time $(V_D = Rated \ V_{DRM}, \ I_{TM} = 16A, \ I_G = 2mA)$	t _{gt}	-	1.0	-	μs
DYNAMIC CHARACTERISTICS					
Critical rate of rise of off-state voltage $(V_D = rated \ V_{DRM}, \ R_{GK} = 1k\Omega, \ T_J = 110^{\circ}\text{C}, \ exponential \ waveform)$	dv/dt	-	10	-	V/μs

Note 2. Ratings apply for negative gate voltage or R_{GK} = 1kΩ. Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

Note 3: R_{GK} current not included in measurement.

MECHANICAL CHARACTERISTICS

Case:	TO-220AB	
Marking:	Body painted, alpha-numeric	
Pin out:	See below	

Pin 1: Cathode Pin 2: Anode Pin 3: Gate Pin 4: Anode (Case)

MCR72 SERIES

SILICON CONTROLLED RECTIFIERS

	TO-220AB			
	Inches		Millim	neters
	Min	Max	Min	Max
Α	0.575	0.620	14.600	15.750
В	0.380	0.405	9.650	10.290
С	0.160	0.190	4.060	4.820
D	0.025	0.035	0.640	0.890
F	0.142	0.147	3.610	3.730
G	0.095	0.105	2.410	2.670
Н	0.110	0.155	2.790	3.930
J	0.014	0.022	0.360	0.560
K	0.500	0.562	12.700	14.270
L	0.045	0.055	1.140	1.390
N	0.190	0.210	4.830	5.330
Q	0.100	0.120	2.540	3.040
R	0.080	0.110	2.040	2.790
S	0.045	0.055	1.140	1.390
Т	0.235	0.255	5.970	6.480
U	-	0.050	-	1.270
٧	0.045	720	1.140	(1 <u>5</u>)
Z	-	0.080	18	2.030

MCR72 SERIES

SILICON CONTROLLED RECTIFIERS

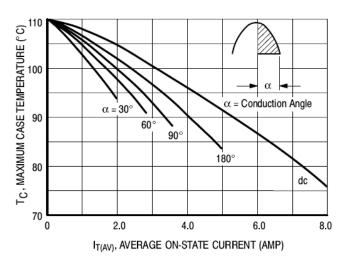


Figure 1. Average Current Derating

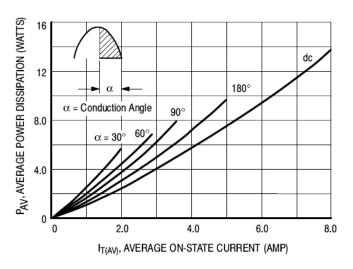


Figure 2. On-State Power Dissipation

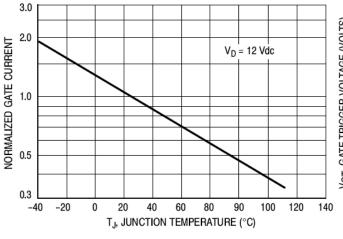


Figure 3. Normalized Gate Current

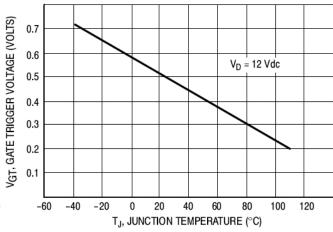


Figure 4. Gate Voltage