

Semiconductors
High-reliability discrete products and engineering services since 1977

2N6901

100V N-CHANNEL MOSFET

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		$V_{\text {DS }}$	100	V
Gate-Source Voltage		VGS	± 10	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	1.69	A
	$\mathrm{T}_{\mathrm{c}}=100^{\circ} \mathrm{C}$		1.07	
Maximum Power Dissipation ${ }^{1}$		PD	8.33	W
Thermal Resistance, Junction to Case		$\mathrm{R}_{\text {өлс }}$	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

1. Derate linearly by $0.067 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ for $\mathrm{TC} \geq 25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameters		Symbol	Min	Max	Unit
Drain-Source Breakdown Voltage $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		BV ${ }_{\text {DSs }}$	100	-	V
Gate-Source Threshold Voltage $\mathrm{V}_{G S}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		$V_{\text {GS(th) }}$	1.0	2.0	V
Zero Gate Voltage Drain Ccurrent $\begin{aligned} & V_{D S}=80 \mathrm{~V} \\ & V_{D S}=80 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$		Idss		$\begin{gathered} 1 \\ 50 \end{gathered}$	$\mu \mathrm{A}$
Gate-Source Leakage Current $V_{G S}= \pm 10 V, V_{D S}=0$		Igss	-	100	nA
Drain-Source On Voltage $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1.07 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=1.69 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \end{aligned}$		$\mathrm{VDS}_{\text {(on }}{ }^{1}$		$\begin{aligned} & 1.5 \\ & 2.4 \end{aligned}$	V
Drain-Source On Resistance $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1.07 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1.07 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \end{aligned}$		$\mathrm{rds}(0 n)^{1}$		$\begin{aligned} & 1.4 \\ & 2.6 \end{aligned}$	Ω
Forward Transconductance $V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.07 \mathrm{~A}$		gfs^{1}	500	3500	mmho
Turn-On Delay Time	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$	$\mathrm{td}_{\text {d }}$	-	25	
Rise Time	$\mathrm{I}_{\mathrm{D}}=1.07 \mathrm{~A}$	tr_{r}	-	80	
Turn-Off Delay Time	$\mathrm{R}_{\mathrm{gan}}=\mathrm{T}_{\mathrm{gs}}=15 \Omega$	$\mathrm{t}_{\text {d(off) }}$	-	45	
Fall Time	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	t_{f}	-	80	
Diode Forward Voltage	$\mathrm{IsD}=1.69 \mathrm{~A}$	$\mathrm{V}_{\text {SD }}{ }^{1}$	0.8	1.6	V
Reverse Recovery Time	$\begin{gathered} \mathrm{IF}_{\mathrm{F}}=1.0 \mathrm{~A}, \\ \mathrm{di} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	$\mathrm{trr}_{\text {r }}$	-	250	ns

1. Pulsed: Pulse Width ≤ 300 us, Duty Cycle $\leq 2 \%$

Semiconductors
High-reliability discrete products and engineering services since 1977

2N6901

100V N-CHANNEL MOSFET

MECHANICAL CHARACTERISTICS

Case	TO-39
Marking	Alpha-numeric
Pin out	See below

			Millim	ters
	Min	Max	Min	Max
A	0.350	0.370	8.890	9.400
B	0.315	0.335	8.000	8.510
C	0.240	0.260	6.10	6.60
D	0.016	0.021	0.406	0.533
E	0.009	0.125	0.2269	3.180
F	0.016	0.019	0.406	0.533
G	0.190	0.210	4.830	5.33
H	0.028	0.034	0.711	0.864
J	0.029	0.040	0.737	1.020
K	0.500	-	12.700	-
L	0.250	-	6.350	-
M	$45^{\circ} \mathrm{NOM}$		$45^{\circ} \mathrm{NOM}$	
P	-	0.050	-	1.270
Q	$90^{\circ} \mathrm{NOM}$		$90^{\circ} \mathrm{NOM}$	
R	0.100	-	2.540	-

