

2N6849

High-reliability discrete products and engineering services since 1977

P- CHANNEL MOSFET

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS.

Rating	Symbol	Value	Unit	
Operating and Storage Temperature Range	TJ, Tstg	-55 to +150	°C	
Thermal Resistance Junction To Case	Rejc	5.0	°C/W	
Total Power Dissipation @ T _A = 25°C Derate above 25°C ⁽¹⁾	P _T	0.8 25	mW mW/°C	
Drain Source Voltage	V _{DS}	-100	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current @ T _c = +25°C $^{(2)}$	I _{D1}	-6.5	A	
Drain Current @ $T_c = +100^{\circ}C^{(2)}$	I _{D2}	-4.1	А	
Off State Current(Peak Total Value) ⁽³⁾	I _{DM}	-25	A(pk)	
Source Current	ls	-6.5	Α	

Notes: Derate linearly 0.2W/°C for T_C > 25°C.

Note 2: The following formula derives the maximim theoretic I_D limit. I_D is also limited by poackage and internal wires and may be limited due to pin diameter. $I_D = v T_{\underline{I}(max)} - T_{\underline{C}}$

 $R_{\theta JC} \times R_{DS(on)} @ T_{J(max)}$

Note 3: $I_{DM} = 4 \times I_{D1}$ as calculated in Note 2

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	·			•
Drain-Source Breakdown Voltage V _{GS} = 0V, I _D = -1.0mA	V _{(BR)DSS}	-100	-	V
Gate-Source Voltage (Threshold)				
$V_{DS} \ge V_{GS}$. $I_D = -0.25 mA$	V _{GS(th)1}	-2.0	-4.0	v
$V_{DS} \ge V_{GS}$. $I_D = -0.25 \text{mA}$, $T_J = +125^{\circ}\text{C}$	V _{GS(th)2}	-1.0	-	v
V _{DS} ≥ V _{GS} . I _D = -0.25mA, T _J = -55°C	V _{GS(th)3}	-	-5.0	
Gate Current				
$V_{GS} = \pm 20V$, $V_{DS} = 0V$	I _{GSS1}	-	±100	nA
$V_{GS} = \pm 20V, V_{DS} = 0V, T_J = +125^{\circ}C$	I _{GSS2}	-	±200	
Drain Current				
$V_{GS} = 0V$, $V_{DS} = -80V$	I _{DSS1}	-	-25	μΑ
Drain Current	1			
V _{GS} = 0V, V _{DS} = -80V, T _J = +125°C	IDSS2	-	-0.25	mA
Static Drain-Source On-State Resistance				0
V_{GS} = -10V, I_D = -4.1A pulsed	r _{DS(on)1}	-	0.30	Ω
Static Drain-Source On-State Resistance				0
V_{GS} = -10V, I_D = -6.5A pulsed	r _{DS(on)2}	-	0.32	Ω
Static Drain-Source On-State Resistance T _J = 125°C				0
V_{GS} = -10V, I_D = -4.1A pulsed	r _{DS(on)1}	-	0.54	Ω
Diode Forward Voltage				
$V_{GS} = 0V$, $I_D = -6.5A$ pulsed	V _{SD}	-	-4.3	V

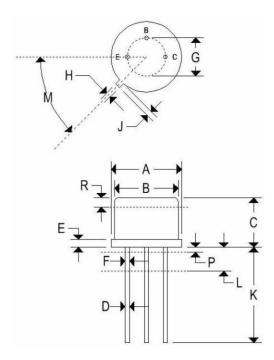
2N6849

P- CHANNEL MOSFET

DYNAMIC CHARACTERISTICS				
On-State Gate Charge $V_{GS} = -10V$, $I_D = -6.5A$, $V_{DS} = -50V$	Qg(on)	-	34.8	nC
Gate to Source Charge $V_{GS} = -10V$, $I_D = -6.5A$, $V_{DS} = -50V$	Qg	-	6.8	nC
Gate to Drain Charge V_{GS} = -10V, I_D = -6.5A, V_{DS} = -50V	Q _{gd}	-	23.1	nC

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
SWITCHING CHARACTERISTICS				
Turn-On Delay Time				nc
I_D = -6.5A, V_{GS} = -10V. R_G = 7.5 Ω , V_{DD} = -40V	t _{d(on)}	-	60	ns
Rinse Time				nc
I_D = -6.5A, V_{GS} = -10V. R_G = 7.5 Ω , V_{DD} = -40V	tr	-	140	ns
Turn-off Delay Time				
I_D = -6.5A, V_{GS} = -10V. R_G = 7.5 Ω , V_{DD} = -40V	$t_{d(off)}$	-	140	ns
Fall Time				20
I_D = -6.5A, V_{GS} = -10V. R_G = 7.5 Ω , V_{DD} = -40V	t _f	-	140	ns
Diode Reverse Recovery Time				
Di/dt \leq -100A/µs, V _{DD} = \leq -50V, I _F = -6.5A	t _{rr}	-	250	ns



2N6849

P- CHANNEL MOSFET

MECHANICAL CHARACTERISTICS

Case:	TO-39	
Marking:	ing: Alpha-numeric	
Pin out:	See below	

	TO-39			
	Inches		Millim	eters
	Min	Max	Min	Max
Α	0.350	0.370	8.890	9.400
В	0.315	0.335	8.000	8.510
С	0.240	0.260	6.10	6.60
D	0.016	0.021	0.406	0.533
Е	0.009	0.125	0.2269	3.180
F	0.016	0.019	0.406	0.533
G	0.190	0.210	4.830	5.33
Н	0.028	0.034	0.711	0.864
J	0.029	0.040	0.737	1.020
K	0.500	-	12.700	-
L	0.250	-	6.350	-
М	45° NOM		45° N	MON
Р	-	0.050	-	1.270
Q	90° NOM		90° N	MON
R	0.100		2.540	-

2N6849

P- CHANNEL MOSFET

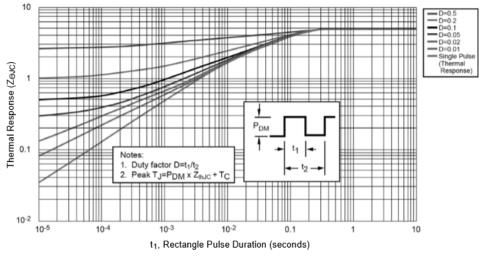


FIGURE 1 – Normalized Transient Thermal Impedance

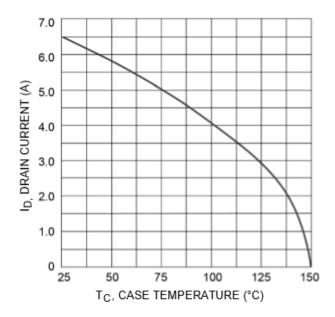


FIGURE 2 - Maximum Drain Current vs Case Temperature

2N6849

P- CHANNEL MOSFET

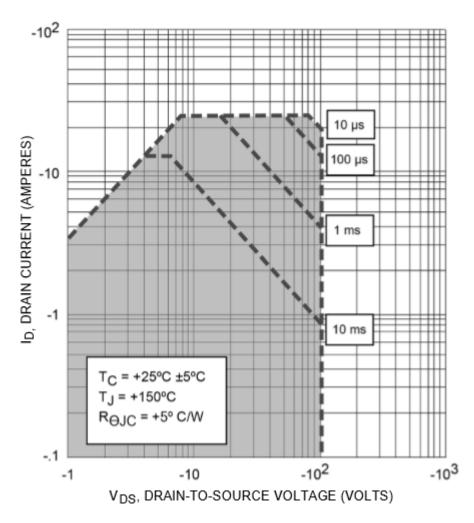


FIGURE 3 - Maximum Safe Operating Area