

MFE120-MFE122

High-reliability discrete products and engineering services since 1977

DUAL GATE MOSFETS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS. Rating Symbol Value Unit **Drain Source Voltage** V_{DS} 25 Vdc **Drain Current** 30 mAdc \mathbf{I}_{D} Total Power Dissipation @ T_A = 25°C 300 mW \mathbf{P}_{D} Derate above 25°C 1.7 mW/°C **Operating and Storage Temperature Range** T_J, T_{stg} -65 to +175 °C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

OFF CHARACTERISTICS Drain Source Breakdown Voltage ($I_D = 100 \ \mu Adc, \ V_S = 0, \ V_{G1S} = -4.0 \ Vdc, \ V_{G2S} = 4.0 \ V)$ $V_{(BR)DSX}$ 25 - - Vdc Gate 1 - Source Breakdown Voltage ($I_{G1} = \pm 10 \ \mu Adc, \ V_{G2S} = 0$) $V_{(BR)G1SO}$ ± 7.0 - ± 20 Vdc
Drain Source Breakdown Voltage (I _D = 100 μ Adc, V _S = 0, V _{G1S} = -4.0 Vdc, V _{G2S} = 4.0V)V (BR)DSX25VdcGate 1 - Source Breakdown Voltage (I _{G1} = ±10 μ Adc, V _{G2S} = 0)V (BR)G1SO±7.0-±20Vdc
(I _D = 100 μ Adc, V _S = 0, V _{G1S} = -4.0 Vdc, V _{G2S} = 4.0V) V(BR)DSX 2.5 1 V(dc Gate 1 - Source Breakdown Voltage ⁽¹⁾ V(BR)G150 ±7.0 - ±20 Vdc Gate 1 - Source Breakdown Voltage ⁽¹⁾ V(BR)G150 ±7.0 - ±20 Vdc
Gate 1 - Source Breakdown Voltage ⁽¹⁾ $V_{(BR)G1SO}$ ± 7.0 - ± 20 Vdc $(I_{G1} = \pm 10 \ \mu Adc, V_{G2S} = 0)$ Cota 2 - Source Breakdown Voltage ⁽¹⁾ - ± 20 Vdc
$(I_{G1} \pm \pm 10 \mu\text{Adc}, V_{G2S} = 0)$
Cate 2. Course Dreaded over Maltana (1)
Gate 2 – Source Breakdown Voltage V
$(I_{G2} = \pm 10 \mu \text{Adc}, V_{G2S} = 0)$
Gate 1 Leakage Current
$(V_{G1S} = \pm 6.0 \text{ Vdc}, V_{G2S} = 0, V_{DS} = 0)$
Gate 2 Leakage Current
$(V_{G2S} = \pm 6.0 \text{ Vdc}, V_{G1S} = 0, V_{DS} = 0)$
Gate 1 to Source Cutoff Voltage
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 200 \mu\text{Adc})$
Gate 2 to Source Cutoff Voltage
$(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_D = 200 \mu\text{Adc})$
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
(V _{DS} = 15 Vdc, V _{G1S} = 0, V _{G2S} = 4.0 Vdc) MFE120 2.0 7.0 18 MAdc
MFE121 5.0 10 30
MFE122 2.0 9.0 20
SMALL SIGNAL CHARACTERISTICS
Forward Transfer Admittance (Gate 1 to Drain)
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ MFE120}, \text{ MFE122} Y_{fs} 8000 - 18000 \mu \text{ mhos}$
KHZ) MFE121 10000 - 20000
Input Capacitance
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = I_{DSS}, f = 1.0$ MFE122 C_{iss} - 4.5 7.0 pF
MFE121 - 4.5 6.0
Keverse Transfer Capacitance Crss - pF (V = 15)/dc V = 4.0 V/dc I = 5.0 m/dc f= 1.0 MHz) Crss 0.022 - pF
(v _{DS} - 15 vut, v _{G2S} - 4.0 vut, i _D - 0.0 (fiAdt, i = 1.0 MHz) - 0.023
Output Capacitance
(V _{DS} = 15 Vdc, V _{G2S} = 4.0 Vdc, I _D = I _{DSS} , f = 1.0 MHz) MFF121 - 2.5 4.0 pF

High-reliability discrete products and engineering services since 1977

MFE120-MFE122

DUAL GATE MOSFETS

FUNCTIONAL CHARACTERISTICS						
Noise Figure						
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 6.0 \text{ mAdc},$						
Zs is optimized for NF)		NE				d b
(f = 105MHz, Figure 1)	MFE120	NF	-	2.9	5.0	aв
(f = 60MHz, figure 3)	MFE121		-	2.6	5.0	
(f = 200MHz, figure 3)	MFE121		-	2.6	5.0	
OFF CHARACTERISTICS						
Drain Source Breakdown Voltage		Manager	25			Vdc
$(I_D = 100 \ \mu Adc, V_S = 0, V_{G1S} = -4.0 \ Vdc, V_{G2S} = 4.0 V)$		V (BR)DSX	25	_	_	vuc
Gate 1 – Source Breakdown Voltage ⁽¹⁾		V _{(BR)G1SO}	±7.0	-	±20	Vdc
$(I_{G1} = \pm 10 \ \mu \text{Adc}, \ V_{G2S} = 0)$						
$(I_{G2} = \pm 10 \ \mu Adc, V_{G2S} = 0)$		V _{(BR)G2SO}	±7.0	-	±20	Vdc
Gate 1 Leakage Current		10155	-	-	20	nAdc
$(V_{G1S} = \pm 6.0 \text{ Vdc}, V_{G2S} = 0, V_{DS} = 0)$		-0133				
Gate 2 Leakage Current ($V_{exc} = \pm 6.0 \text{ Vdc}$, $V_{exc} = 0.0 \text{ Vac} = 0$)		I _{G2SS}	-	-	20	nAdc
Gate 1 to Source Cutoff Voltage						
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 200 \mu\text{Adc})$		V _{G1S(off)}	-	-	-4.0	Vdc
Gate 2 to Source Cutoff Voltage		V			4.0	Vdc
$(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_D = 200 \ \mu\text{Adc})$		V G2S(off)	_	-	-4.0	vuc
ON CHARACTERISTICS					2	P
Zero-Gate Voltage Drain Current						
$(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, V_{G2S} = 4.0 \text{ Vdc})$	MFE120	lass	2.0	7.0	18	mAdc
	MFE121	1055	5.0	10	30	made
	MFE122		2.0	9.0	20	
SMALL SIGNAL CHARACTERISTICS	1	1		1	1	1
Forward Transfer Admittance (Gate 1 to Drain)						
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = 10 \text{ mAdc}, f = 1.0$	MFE120, MFE122	Y _{fs}	8000	-	18000	μmhos
kHz)	MFE121		10000	-	20000	
Input Capacitance						
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = I_{DSS}, f = 1.0$	MFE120, MFE122	Ciss	-	4.5	7.0	pF
MHz)	MFE121		-	4.5	6.0	
Reverse Transfer Capacitance		Crss			-	pF
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 6.0 \text{ mAdc}, t = 1.0 \text{ M}$	Hz)		-	0.023		•
Output Capacitance	NEE420 NEE422	6		2.5	4.0	
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = I_{DSS}, f = 1.0 \text{ MHz})$	MFE120, MFE122	Coss	-	2.5	4.0	р⊦
	IVIFE121		-	2.5	3.5	
					1	
Noise Figure $(y = 15)/dc = 4.0)/dc = 5.0mAdc$						
$v_{DS} = 15$ vic, $v_{G2S} = 4.0$ vic, $v_D = 0.011$ Auc,						
f = 105 MHz Figure 1)	MEE120	NF	_	20	5.0	dB
(f = 60 MHz figure 3)	MFF121		-	2.5	5.0	
(f = 200 MHz, figure 3)	MFE121		-	2.6	5.0	
,						

High-reliability discrete products and engineering services since 1977

MECHANICAL CHARACTERISTICS

Case:	ТО-72
Marking:	Alpha-numeric
Pin out:	See below

		TC)-72		
	Inc	hes	Millimeters		
	Min	Max	Min	Max	
А	-	0.230		5.840	
В	142	0.195	743	4.950	
С	-	0.210	4	5.330	
D	-	0.021	(e)	0.530	
Е	-	0.030	(4)	0.760	
F	070	0.019	(*)	0.480	
G	0.100 BSC		2.540 BSC		
Н	-	0.046		1.170	
J	3 4 0	0.048	(H)	1.220	
К	0.500	i i	12.700	-	
L	0.250	а.	(e) (6.350	
М	45°	BSC	45° BSC		
Ν	0.050 BDC		1.270 BSC		
Р	(12)	0.050	141	1.270	

MFE120-MFE122

DUAL GATE MOSFETS

MFE120-MFE122

DUAL GATE MOSFETS

High-reliability discrete products and engineering services since 1977

FIGURE 2 - 60 AND 200 MHz TEST CIRCUIT

High-reliability discrete products

MFE120-MFE122

DUAL GATE MOSFETS

High-reliability discrete products and engineering services since 1977

MFE120-MFE122

DUAL GATE MOSFETS

FIGURE 9 - CONVERSION POWER GAIN