High-reliability discrete products and engineering services since 1977

2N877-2N881, 2N885-2N889

SILICON CONTROLLED RECTFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS ($\mathrm{Sn} / \mathrm{Pb}$ plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Characteristic	Symbol	Min	Typ	Max	Units	Test Condition
Forward blocking current	Ifx					$\mathrm{V}_{\mathrm{FX}}=$ rated $\mathrm{V}_{\mathrm{FXM}}, \mathrm{R}_{\mathrm{GK}}=1000$ ohms
2N877, 2N878, 2N879 2N880, 2N881		-	0.03	10	$\mu \mathrm{Adc}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
		-	10	100		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$
2N885, 2N886, 2N887, 2N888, 2N889		-	0.03	1		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
		-	10	20		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$
Reverse blocking current						$\mathrm{V}_{\mathrm{RX}}=$ rated $\mathrm{V}_{\mathrm{ROM}}(\mathrm{rep})$
2N877, 2N878, 2N879 2N880, 2N881	I_{RX}	-	0.1	10	$\mu \mathrm{Adc}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
		-	10	100		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$
2N885, 2N886, 2N887, 2N888, 2N889		-	0.1	1		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
		-	10	20		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$
Reverse gate current	IGRM	-	1	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {GRM }}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
Peak on-state voltage	$V_{\text {FM }}$	-	1.3	1.9	V	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{FX}}=1 \mathrm{~A}$, single, half sinewave pulse, 2.0 ms wide max.

High-reliability discrete products and engineering services since 1977

2N877-2N881, 2N885-2N889

SILICON CONTROLLED RECTFIERS

Gate trigger current	Symbol	Min	Typ	Max	Units	$\begin{gathered} \mathrm{V}_{\mathrm{FX}}=6 \mathrm{Vdc}, \mathrm{R}_{\mathrm{GK}}=1000 \mathrm{ohms}, \\ R_{\mathrm{L}}=100 \text { ohms max. } \end{gathered}$
2N877, 2N878, 2N879 2N880, 2 N881	IGt	-	40	200	$\mu \mathrm{Adc}$	$\mathrm{T}_{j}=25^{\circ} \mathrm{C}$
2N885, 2N886, 2N887, 2N888, 2 N889		-	10	20		$\mathrm{T}_{j}=25^{\circ} \mathrm{C}$
Gate trigger voltage						$\begin{gathered} \mathrm{V}_{\mathrm{FX}}=6 \mathrm{Vdc}, \mathrm{R}_{\mathrm{GK}}=1000 \text { ohms }, \\ \mathrm{R}_{\mathrm{L}}=100 \text { ohms max. } \end{gathered}$
2N877, 2N878, 2N879 2N880, 2 N881	$V_{G T}$	0.4	0.5	0.8	Vdc	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
2N885, 2N886, 2N887, 2N888, 2 N889		0.44	0.5	0.6		$\mathrm{T}_{j}=25^{\circ} \mathrm{C}$
All types		0.05	-	-		$\begin{gathered} \mathrm{V}_{\mathrm{FX}}=\text { rated } \mathrm{V}_{\mathrm{FXM}}, \mathrm{R}_{\mathrm{GK}}=1000 \mathrm{ohms}, \\ \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \end{gathered}$

Characteristic	Symbol	Min	Typ	Max	Units	Test Condition
Holding current						$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GK}}=1000 \mathrm{ohms}, \\ & \mathrm{~V}_{\mathrm{FX}}=24 \mathrm{~V} \mathrm{dc} \end{aligned}$
2N877, 2N878, 2N879 2N880, 2N881	I_{H}	0.4	1.7	5.0	mAdc	
2N885, 2N886, 2N887, 2N888, $2 N 889$		0.4	1.1	3.0		
Critical rate of rise of applied forward voltage	dv/dt	-	40	-	V/us	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GK}}=1000 \mathrm{ohms}, \\ & \mathrm{~V}_{\mathrm{FXM}}=\text { rated } \mathrm{V}_{\mathrm{FXM}} \end{aligned}$
Turn-on time (Delay time + rise time)	$t_{\text {d }}+\mathrm{t}_{\mathrm{r}}$	-	1.0	-	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{FX}}=\text { rated } \mathrm{V}_{\mathrm{FXM}}, \\ & \mathrm{I}_{\mathrm{FM}}=1 \mathrm{~A}, \text { gate supply: } 6 \mathrm{~V}, 300 \text { ohms } \end{aligned}$
Circuit commutated turn-off time (all types)	$\mathrm{t}_{\text {off }}$	-	15	-	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GK}}=1000$ ohms, $\mathrm{I}_{\mathrm{FM}}=$ $1 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}$ (recovery) $=1 \mathrm{~A}$, reapplied $\mathrm{V}_{\mathrm{FXM}}=$ rated, rate of rise of reapplied forward blocking voltage $=20 \mathrm{~V} / \mu \mathrm{s}$

High-reliability discrete products and engineering services since 1977

2N877-2N881, 2N885-2N889

SILICON CONTROLLED RECTFIERS

MECHANICAL CHARACTERISTICS

Case:	TO-18
Marking:	Alpha-numeric
Pin out:	See below

Dim	TO-18			
	Inches		Millimeters	
	Min	Max	Min	Max
CD	0.178	0.195	4.520	4.950
CH	0.140	0.210	3.556	5.330
HD	0.209	0.230	5.310	5.840
LC	0.100 TP		2.540 TP	
LD	0.016	0.021	0.410	0.530
LL	0.500	0.750	12.700	19.050
LU	0.016	0.019	0.410	0.480
$\mathrm{~L}_{1}$	-	0.050	-	1.270
$\mathrm{~L}_{2}$	0.250	-	6.350	-
P	0.100	-	2.540	-
Q	-	0.040	-	1.020
TL	0.028	0.048	0.710	1.220
TW	0.036	0.046	0.910	1.170
a	$45^{\circ} \mathrm{TP}$	$45^{\circ} \mathrm{TP}$		

High-reliability discrete products and engineering services since 1977

1. Maximum forward

CHARACTERISTICS, ON-STATE

2N877-2N881, 2N885-2N889

SILICON CONTROLLED RECTFIERS

2. MAXIMUM ALLOWABLE CASE TEMPERATURE ($125^{\circ} \mathrm{C}$ IUNCTION YEMP.)

High-reliability discrete products
and engineering services since 1977

2N877-2N881, 2N885-2N889

SILICON CONTROLLED RECTFIERS

3. MAXIMUM ALLOWABLE AMBIENT TEMPERATURE $\left(125^{\circ} \mathrm{C}\right.$ JUNCTION TEMP.)

4. PORWARD POWER DISSIPATION

5. GATE TRIGGERING CHARACTERISTICS (2N877-2N88I)

6. GATE TRIGGERING CHARACTERISTICS (2N885-2N889)

7. HOLDING CURRENT AS A FUNCTION OF JUNCTION TEMPERATURE (2NB77-2N88I)

High-reliability discrete products
and engineering services since 1977

2N877-2N881, 2N885-2N889

SILICON CONTROLLED RECTFIERS

9. MAXIMUM ALLOWABLE NON-RECURRENT SURGE CURRENT AT RATED LOAD CONDITIONS

11. MAXIMUM ALLOWABLE AMBIENT TEMPERATURE $\left(150^{\circ} \mathrm{C}\right.$ JUNCTION TEMP.)

12. MAXIMUM ALLOWABLE CASE TEMPERATURE ($150^{\circ} \mathrm{C}$ SUNCTION TEMP.)

Charts 11 and 12 apply to latching applications where SCR need not block forward voltage after being turned on, since the $\mathrm{V}_{\text {FxM }}$ rating does not apply above $125^{\circ} \mathrm{C}$ junction temperature. SCR will again block rated forward voltage after junction temperafure drops below $125^{\circ} \mathrm{C}$.

