

2N4870, 2N4871

UNIJUNCTION TRANSISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit			
RMS power dissipation ⁽¹⁾	P _D	300	mW			
RMS emitter current	l _e	50	mA			
Peak pulse emitter current(2)	İe	1.5	Amp			
Emitter reverse voltage	V _{B2E}	30	Volts			
Interbase voltage †	V_{B2B1}	35	Volts			
Operating junction temperature range	Tı	-55 to 125	°C			
Storage temperature range	T_{stg}	-55 to 150	°C			

Note 1: Derate 3.04mW/°C increase in ambient temperature

Note 2: Duty cycle \leq 1%. PRR = 10PPS.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristic		Symbol	Min	Тур	Max	Unit
Intrinsic standoff ratio						
$(V_{B2B1} = 10V)^{(1)}$	2N4870	η	0.56	-	0.75	-
	2N4871		0.70	-	0.85	
Interbase resistance						l. alama
$(V_{B2B1} = 3.0V, I_E = 0)$		R_{BB}	4.0	6.0	9.1	kohms
Interbase resistance temperature coeffic	ient	- 0				0//86
$(V_{B2B1} = 3.0v, I_E = 0, T_A = -65^{\circ} \text{ to } 125^{\circ}\text{C}$		αR_{BB}	0.1	-	0.9	%/°C
Emitter saturation voltage		.,				Valla
$(V_{B2B1} = 10V, I_E = 50mA)^{(2)}$		V _{EB1(sat)}	-	- 2.5	-	Volts
Modulated interbase current		I _{B2(mod)}				
$(V_{B2B1} = 10V, I_E = 50mA)$	_{32B1} = 10V, I _E = 50mA)		-	15	-	mA
Emitter reverse current						
$(V_{B2E} = 30V, I_{B1} = 0)$		I _{EB20}	-	0.005	1.0	μΑ
Peak point emitter current						
$(V_{B2B1} = 25V)$		l _P	-	1.0	5.0	μΑ
Valley point current						
$(V_{B2B1} = 20V, R_{B2} = 100ohms)^{(2)}$	2N4870	lv	2.0	5.0	-	mA
	2N4871		4.0	7.0	-	
Base-one peak pulse voltage						
	2N4870	V_{OB1}	3.0	6.0	-	Volts
	2N4871		5.0	8.0	-	

Note 1: Intrinsic standoff ration: VP = η VB2B1+ VF, where VF is about 0.49V at 25°C @ IF = 10μA and decreases with temperature at about 2.5mV/°C. Components R1, C1, and the UJT form a relaxation oscillator; the remaining circuitry serves as a peak –voltage detector. The forward drop of diode D1 compensates for VR. To use, the "cal" button is pushed and R3 is adjusted to make the current meter, M1, read full scale. When the "cal" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.0.

Note 2: Use pulse techniques: PW ≈ 300μs duty cycle ≤ 2% to avoid internal heating due to interbase modulation which may result in erroneous readings.

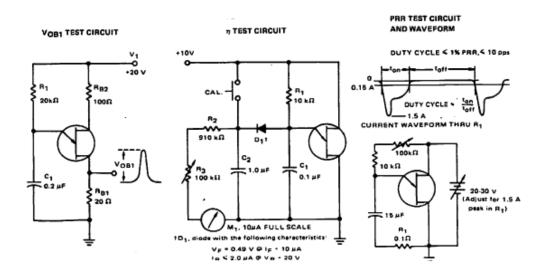
[†] Base upon power dissipation at T_A = 25°C.

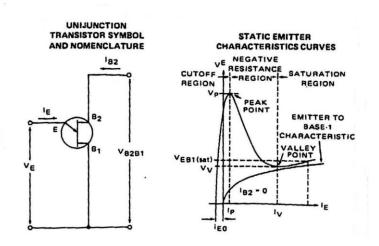
MECHANICAL CHARACTERISTICS

Case:	TO-92			
Marking:	Alpha numeric			
Pin out:	See below			

Seating Plane Section X-X S

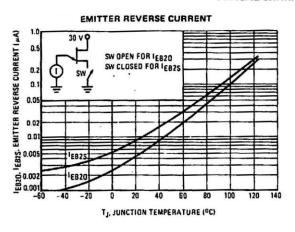
2N4870, 2N4871

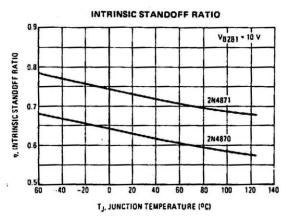

UNIJUNCTION TRANSISTORS


	TO-92				
Dim	Inc	hes	Millimeters		
	Min	Max	Min Max		
Α	0.175	0.205	4.450	5.200	
В	0.170	0.210	4.320	5.330	
С	0.125	0.165	3.180	4.190	
D	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.150	1.390	
Н	0.095	0.105	2.420	2.660	
J	0.015	0.020	0.390	0.500	
K	0.500		12.700		
L	0.250		6.350	٠	
N	0.080	0.105	2.040	2.660	
Р		0.100		2.540	
R	0.115		2.930		
V	0.135	•	3.430		

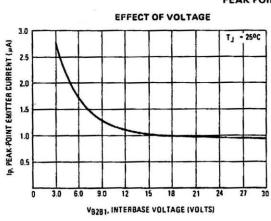
2N4870, 2N4871

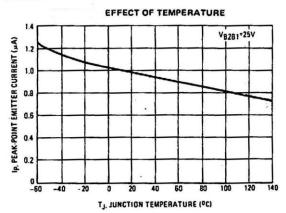
UNIJUNCTION TRANSISTORS

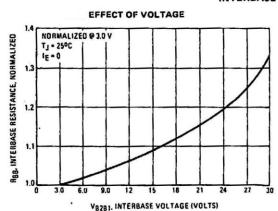


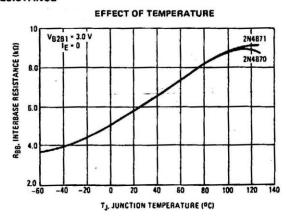


2N4870, 2N4871

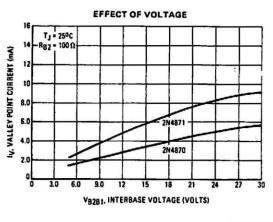

UNIJUNCTION TRANSISTORS

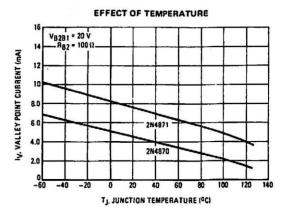

TYPICAL CHARACTERISTICS



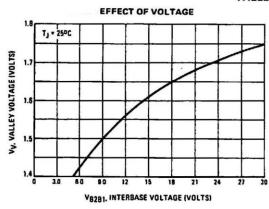

PEAK POINT CURRENT

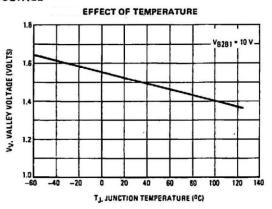
INTERBASE RESISTANCE

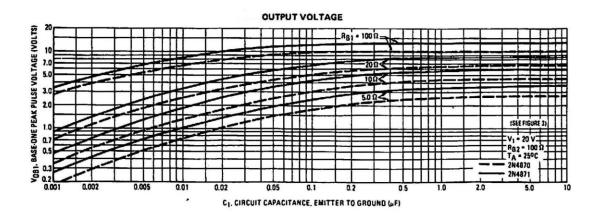



2N4870, 2N4871

UNIJUNCTION TRANSISTORS


TYPICAL CHARACTERISTICS


VALLEY CURRENT



VALLEY VOLTAGE

