

MAC223(A) SERIES

High-reliability discrete products and engineering services since 1977

SILICON BIDIRECTIONAL THYRISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak repetitive off-state voltage ⁽¹⁾			
$(T_J = -40 \text{ to } +125^{\circ}\text{C}, \frac{1}{2} \text{ sine wave, } 50 \text{ to } 60\text{Hz, gate open})$			
MAC223-3, MAC223A-3		100	Volts
MAC223-4, MAC223A-4		200	
MAC223-5, MAC223A-5	V_{DRM}	300	
MAC223-6, MAC223A-6	V DRM	400	
MAC223-7, MAC223A-7		500	
MAC223-8, MAC223A-8		600	
MAC223-9, MAC223A-9		700	
MAC223-10, MAC223A-10		800	
RMS on-state current (Full cycle sine wave, 50 to 60Hz, $T_C = 80^{\circ}C$)	I _{T(RMS)}	25	Amps
Peak non-repetitive surge current			
(1 cycle, 60Hz, $T_C = 80$ °C, preceded and followed by rated current)	I _{TSM}	250	Amps
Circuit fusing considerations (t = 8.3ms)	l ² t	260	A ² s
Peak gate current ($t \le 2\mu s$)	I _{GM}	2.0	Amps
Peak gate voltage $(t \le 2\mu s)$	V _{GM}	±10	Volts
Peak gate power ($t \le 2\mu s$)	P _{GM}	20	Watts
Average gate power (T _C = 80°C, t≤8.3ms)	P _{G(AV)}	0.5	Watts
Operating junction temperature range	T,	-40 to +125	°C
Storage temperature range	T _{stg}	-40 to +150	°C
Mounting torque		8	In. lb.
Note 1: V _{DBM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a const	ant current source such that the voltage	ratings of the devices are	evceeded

Note 1: V_{DRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded

THERMAL CHARACTERISTICS

Characteristic	Symbol	Maximum	Unit
Thermal resistance, junction to case	R _{eJC}	1.2	°C/W
Thermal resistance, junction to ambient	R _{OJA}	60	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур.	Max	Unit
Peak blocking current (2)					
$(V_D = Rated V_{DRM}, T_J = 25^{\circ}C)$	I _{DRM}	-	-	10	μΑ
$(V_D = Rated V_{DRM}, T_J = 125^{\circ}C)$		-	-	2	mA
Peak on-state voltage	.,				
$(I_{TM} = 35A \text{ peak, pulse width} \le 2\text{ms, duty cycle} \le 2\%.)$	V _{TM}	-	1.4	1.85	Volts
Gate trigger current (continuous dc)					
$(V_D = 12V, R_L = 100\Omega)$					1
MT2(+),G(+); MT2(+),G(-); MT2(-),G(-)	I _{GT}	-	20	50	mA
MT2(-),G(+) "A" suffix only		-	30	75	

High-reliability discrete products and engineering services since 1977

MAC223(A) SERIES

SILICON BIDIRECTIONAL THYRISTORS

Gate trigger voltage (continuous dc)					
$(V_D = 12V, R_L = 100\Omega)$					
MT2(+),G(+); MT2(+),G(-); MT2(-),G(-)		-	1.1	2.0	
MT2(-),G(+) "A" suffix only	V_{GT}	-	1.3	2.5	Volts
$(V_D = Rated V_{DRM}, R_L = 10k\Omega, T_J = 125^{\circ}C)$					
MT2(+),G(+); MT2(+),G(-); MT2(-),G(-)		0.2	0.4	-	
MT2(-),G(+) "A" suffix only		0.2	0.4	-	
Holding current	I _H				mA
$(V_D = 12V, I_{TM} = 200mA, gate open)$		-	10	50	
Gate controlled turn-on time	t _{gt}				μs
$(V_D = Rated V_{DRM}, I_{TM} = 35A, I_G = 200mA)$		-	1.5	-	
Critical rate of rise of off-state voltage	dv/dt				V/µs
$(V_D$ = Rated V_{DRM} , exponential waveform, gate open, T_C = 125°C)		-	40	-	
Critical rate of rise of commutation voltage	dv/dt(c)				V/µs
$(V_D$ = Rated $V_{DRM,}I_{TM}$ = 35A peak, commutating di/dt = 12.6A/ms, gate unenergized,		-	5	-	
$T_C = 80$ °C)					
Note 2. Detays annu for one gets conditions. Devices shall not be tested with a constant aurent source for blocking valences such that the valence annual or available state of the control of the contro					

Note 2: Ratings apply for open gate conditions. Devices shall not be tested with a constant current source for blocking voltages such that the voltage applied exceeds the rated blocking voltage

MECHANICAL CHARACTERISTICS

Case	TO-220AB
Marking	Alpha-numeric
Pin out	See below

	TO-220AB				
	Inches		Millimeters		
	Min	Max	Min	Max	
Α	0.575	0.620	14.600	15.750	
В	0.380	0.405	9.650	10.290	
С	0.160	0.190	4.060	4.820	
D	0.025	0.035	0.640	0.890	
F	0.142	0.147	3.610	3.730	
G	0.095	0.105	2.410	2.670	
Н	0.110	0.155	2.790	3.930	
J	0.014	0.022	0.360	0.560	
K	0.500	0.562	12.700	14.270	
L	0.045	0.055	1.140	1.390	
N	0.190	0.210	4.830	5.330	
Q	0.100	0.120	2.540	3.040	
R	0.080	0.110	2.040	2.790	
S	0.045	0.055	1.140	1.390	
T	0.235	0.255	5.970	6.480	
U	197	0.050	197	1270	
٧	0.045	(4)	1.140		
Z	-	0.080		2.030	

High-reliability discrete products and engineering services since 1977

MAC223(A) SERIES

SILICON BIDIRECTIONAL THYRISTORS

20

25

FIGURE 3 - GATE TRIGGER CURRENT

FIGURE 4 - GATE TRIGGER VOLTAGE

I_{T(RMS)}, RMS ON-STATE CURRENT (AMPS)

FIGURE 5 - HOLD CURRENT

FIGURE 6 - TYPICAL ON-STATE CHARACTERISTICS

