

High-reliability discrete products and engineering services since 1977

2SB554

PNP SILICON POWER TRANSISTOR

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

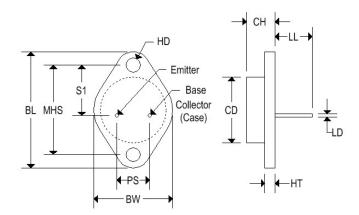
MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-base voltage	V_{CBO}	180	V
Collector-emitter voltage	V_{CEO}	180	V
Emitter-base voltage	V_{EBO}	5	V
Collector current	Ic	15	А
Emitter current	I _E	15	А
Collector power dissipation (T _C = 25°C)	P _C	150	W
Junction temperature	TJ	150	°C
Storage temperature	T_{stg}	-65 to 150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristic	Symbol	Test Condition Min		Тур	Max	Unit
Collector cut-off current	I _{CBO}	V _{CB} = 90V, I _E = 0	-	-	100	μΑ
Emitter cut-off current	I _{EBO}	$V_{EB} = 5V, I_{C} = 0$		-	100	μΑ
Collector-emitter breakdown voltage	V _{(BR)CEO}	$I_C = 0.1A$, $I_B = 0$	180	-	-	V
Emitter-base breakdown voltage	$V_{(BR)EBO}$	I _E = 10mA, I _C = 0	5	-	-	V
DC current gain	h _{FE} ⁽¹⁾	$V_{CE} = 5V, I_{C} = 2A$	40	-	140	
Collector-emitter saturation voltage	V _{CE(sat)}	I _C = 10A, I _B = 1A	-	-	3.0	V
Base-emitter voltage	V_{BE}	V _{CE} = 5V, I _C = 10A	-	-	2.5	V
Transition frequency	f _T	V _{CE} = 5V, I _C = 2A	-	6	-	MHz
Collector output capacitance	C _{ob}	V _{CB} = 10V, I _E = 0, f = 1 MHz	-	450	-	pF

Note 1: h_{FE} Classifications (use as part number suffix)


The state of the s		
R	0	
40-80	70-140	

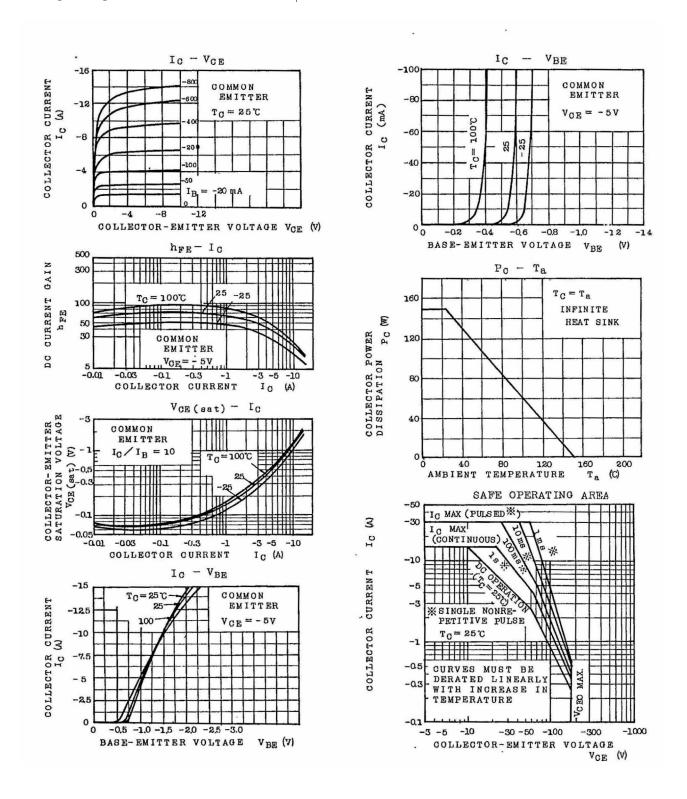
High-reliability discrete products and engineering services since 1977

MECHANICAL CHARACTERISTICS

Case	TO-3	
Marking	Alpha-numeric	
Polarity	See below	

2SB554

PNP SILICON POWER TRANSISTOR


	TO-3				
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	-	0.875	-	22.220	
CH	0.250	0.380	6.860	9.650	
HT	0.060	0.135	1.520	3.430	
BW	-	1.050	-	26.670	
HD	0.131	0.188	3.330	4.780	
LD	0.038	0.043	0.970	1.090	
LL	0.312	0.500	7.920	12.700	
BL	1.550 REF		39.370 REF		
MHS	1.177	1.197	29.900	30.400	
PS	0.420	0.440	10.670	11.180	
S1	0.655	0.675	16.640	17.150	

High-reliability discrete products and engineering services since 1977

2SB554

PNP SILICON POWER TRANSISTOR

