

High-reliability discrete products and engineering services since 1977

2N4427

RF & MICROWAVE DISCRETE LOW POWER TRANSISTOR

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS $(T_c = 25^{\circ}C)$

Symbol	Parameter	Value	Unit	
V _{CEO}	Collector-Emitter	20	Vdc	
V _{CBO}	Collector-Base Voltage	40	Vdc	
V _{EBO}	Emitter-Base Voltage	2.0	Vdc	
Ic	Collector Current	400	mA	

THERMAL DATA

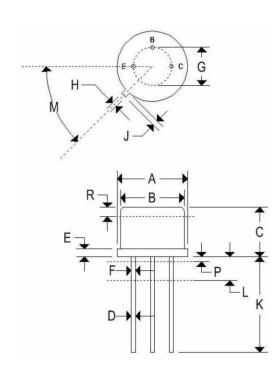
	Symbol	Parameter	Value	Unit
Ī	D .	Total Device Dissipation @ T _A = 25°	1.0	Watts
PD	PD	Derate above 25°C	5.71	mW/°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Cumhal	Test Conditions		Value			
Symbol	lest Conditions	Min.	Тур.	Max.	Unit	
STATIC OFF						
B _{VCER}	Collector-Emitter Sustaining Voltage				Vdc	
DVCER	(I _C = 5.0 mAdc, R _{BE} = 10 ohms)	40	-	-		
B _{VCEO}	Collector-Emitter Sustaining Voltage				Vdc	
DVCEO	$(I_C = 5.0 \text{ mAdc}, I_B = 0)$	20	-	-		
1	Collector Cutoff Current					
I _{CEO}	$(V_{CE} = 12 \text{ Vdc}, I_B = 0)$	-	-	20	μΑ	
Less	Collector Cutoff Current				μΑ	
I _{CEX}	$(V_{CE} = 40 \text{ Vdc}, V_{BE} = -1.5 \text{ Vdc})$	-	-	100		
	Emitter Cutoff Current					
I _{EBO}	(V _{EB} = 2.0 Vdc, I _C = 0)	-	-	100	μΑ	
STATIC ON						
	DC Current Gain					
H _{FE}	$(I_C = 100 \text{ mAdc, } V_{CE} = 5.0 \text{ Vdc})$	10	-	200	-	
	(I _C = 360 mAdc, V _{CE} = 5.0 Vdc)	5				
V	Collector-Emitter Saturation Voltage				Vdc	
V _{CE(sat)}	$(I_C = 100 \text{ mAdc}, I_B = 20 \text{ mAdc})$	-	-	0.5	vuc	
DYNAMIC	·			·		
£	Current-Gain - Bandwidth Product				MHz	
f⊤	(I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)	500	-	-	IVITZ	
•	Output Capacitance		»F			
Сов	(V _{CB} = 12 Vdc, I _E = 0, f = 1.0 MHz)	-	4.0	-	pF	

High-reliability discrete products and engineering services since 1977

2N4427

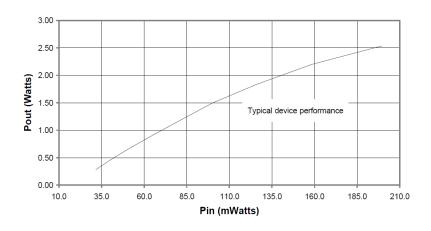

RF & MICROWAVE DISCRETE LOW POWER TRANSISTOR

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Test Conditions		Value			Unit
FUNCTIONAL	FUNCTIONAL					
GPE	Power Gain	Pin = 0.1 W, V _{CE} = 12 Vdc, f = 175 MHz	10	-	-	dB
Pout	Output Power	Pin = 0.1 W, V _{CE} = 12 Vdc, f = 175 MHz	1.0	-	-	Watts
n _c	Collector Efficiency	Pin = 0.1 W, V _{CE} = 12 Vdc, f = 175 MHz	45	-	-	%

MECHANICAL CHARACTERISTICS

Case:	TO-39
Marking:	Alpha-numeric
Polarity:	Cathode band


	TO-39			
	Inches Millimeters		eters	
	Min	Max	Min	Max
Α	0.350	0.370	8.890	9.400
В	0.315	0.335	8.000	8.510
С	0.240	0.260	6.10	6.60
D	0.016	0.021	0.406	0.533
Е	0.009	0.125	0.2269	3.180
F	0.016	0.019	0.406	0.533
G	0.190	0.210	4.830	5.33
Н	0.028	0.034	0.711	0.864
J	0.029	0.040	0.737	1.020
K	0.500	-	12.700	-
L	0.250	-	6.350	0.70
M	45° NOM		45° NOM	
Р	-	0.050	-	1.270
Q	90° NOM		90° NOM	
R	0.100	-	2.540	× .

High-reliability discrete products and engineering services since 1977

2N4427

RF & MICROWAVE DISCRETE LOW POWER TRANSISTOR

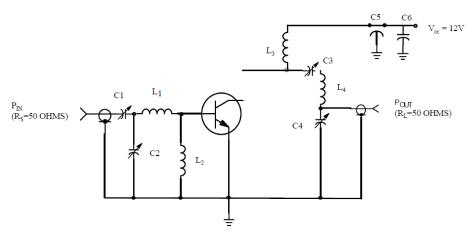


Figure 1 - 175 MHz RF AMPLIFIER CIRCUIT FOR GPE, POUT, AND EFFICIENCY SPECIFICATIONS.

L₁: 2 TURNS No. 16 wire, 3/16" ID, 1/4" long

L₃: 2 TURNS No. 16 wire, 1/4" ID, 1/4" long

Capacitor values in pF unless

L₂: Ferrite choke, Z=450 ohms

L₄: 4 TURNS No. 16 wire, 3/8" ID, 3/8" long

Tuning capacitors are air variable otherwise indicated.