

3N211-3N213

DUAL GATE MOSFET VHF AMPLIFIER

High-reliability discrete products and engineering services since 1977

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Rating	Symbol	3N211 3N212	3N213	Unit
Drain Source Voltage	V _{DS}	27	35	Vdc
Drain Gate Voltage	V _{DG1}	35	40	Vdc
	V _{DG2}	35	40	vuc
Drain Current	ID	50		mAdc
Gate Current	I _{G1}	±10 ±10		mAdc
Gate Current	I _{G2}			mauc
Total Device Dissipation @ $T_A = 25^{\circ}C$	Pp	360 2.4		mW
Derate above 25°C	PD			mW/°C
Total Device Dissipation @ $T_c = 25^{\circ}C$	PD	1.2 8.0		Watt
Derate above 25°C	PD			mW/°C
Lead Temperature, 1/16" from Seated Surface for 10 seconds	TL	300		°C
Junction Temperature Range	TJ	-65 to +175		°C
Storage Temperature Range	T _{stg}	-65 to +175		°C

ELECTRICAL CHARACTERISTICS (T_c = 25°C)

Characteristics		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Drain Source Breakdown Voltage (1)	3N211, 3N212	V	25	-	Vdc
$(I_D = 10 \ \mu Adc, \ V_{G1S} = V_{G2S} = -4.0 \ Vdc)$	3N213	V _{(BR)DSX}	30	-	
Instantaneous Drain Source Breakdown Voltage	3N211, 3N212		27	-	Vdc
$(I_D = 10 \ \mu Adc, V_{G1S} = V_{G2S} = -4.0 \ Vdc)$	3N213	V _{(BR)DSX}	35	-	vac
Gate 1 – Source Breakdown Voltage ⁽²⁾		N	±6.0	-	Vdc
$(I_{G1} = \pm 10 \text{ mAdc}, V_{G2S} = V_{DS} = 0)$		V _{(BR)G1SO}			
Gate 2 – Source Breakdown Voltage ⁽²⁾		N/	±6.0	-	Vdc
$(I_{G2} = \pm 10 \text{ mAdc}, V_{G1S} = V_{DS} = 0)$		V _{(BR)G2SO}			
Gate 1 Leakage Current				±10	nAdc
$(V_{G1S} = \pm 5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0)$		I _{G1SS}	-	±10 -10	nAdc µAdc
$(V_{G1S} = -5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$			-	-10	μΑυς
Gate 2 Leakage Current	e 2 Leakage Current			±10	nAdc
$(V_{G2S} = \pm 5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0)$		I _{G2SS}	-	-10	μAdc
$(V_{G2S} = -5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$			-	-10	μΑυς
Gate 1 to Source Cutoff Voltage	3N211, 3N213		-0.5	-5.5	Vdc
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = 20 \mu \text{ Adc})$	3N212	V _{G1S(off)}	-0.5	-4.0	
Gate 2 Source to Cutoff Voltage	3N211		-0.2	-2.5	Vdc
$(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_{D} = 20 \mu \text{Adc})$	3N212, 3N213	V _{G2S(off)}	-0.2	-4.0	
ON CHARACTERISTICS					
Zero Gate Voltage Drain Current ⁽³⁾			6.0	40	mAda
(V _{DS} = 15 Vdc, V _{G1S} = 0, V _{G2S} = 4.0 Vdc)		I _{DSS}	6.0	40	mAdc

High-reliability discrete products and engineering services since 1977

3N211-3N213

DUAL GATE MOSFET VHF AMPLIFIER

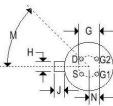
Characteristics		Symbol	Min	Max	Unit
SMALL SIGNAL CHARACTERISTICS					
Forward Transfer Admittance (4)	3N211, 3N212	المعما	17	40	
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, V_{G1S} = 0, f = 1.0 \text{ kHz})$	3N213	yfs	15	35	mmhos
Reverse Transfer Capacitance		6	0.005	0.05	
$(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 1.0 \text{ mAdc}, f = 1.0 \text{ MHz})$		C _{rss}	0.005	0.05	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure	3N211		_	3.5	
(V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz)	3N211 3N211, 3N213	NF	-	3.5 4.0	dB
(V _{DD} = 24 Vdc, V _{GG} =6.0 Vdc, f = 45 MHz)	511211, 511215		-	4.0	
FUNCTIONAL CHARACTERISTICS (con't)					
Common Source Power Gain		G _{ps}			
(V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz)	3N211		24	35	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N211		29	37	dB
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N213		27	35	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz})$	3N212	G _c ⁽⁶⁾	21	28	
Bandwidth		BW			
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$	3N211		5.0	12	MHz
(V _{DD} = 18 Vdc, f _{LO} = 245 MHz, f _{RF} = 200 MHz)	3N212		4.0	7.0	IVITZ
(V _{DD} = 24 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz)	3N211, 3N213		3.5	6.0	
Gain Control Gate Supply Voltage ⁽⁵⁾		V _{gg(gc)}			
(V _{DD} = 18 Vdc, Δ Gps = -30 dB, f = 200 MHz)	3N211		-	-2.0	Vdc
$(V_{DD} = 24 \text{ Vdc}, \Delta \text{ Gps} = -30 \text{ dB}, \text{ f} = 45 \text{ MHz})$	3N211, 3N213		-	±1.0	

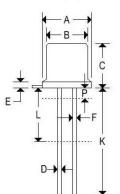
(1)

Measured after five seconds of applied voltage. All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate voltage limiting network is functioning properly. (2)

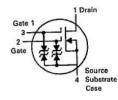
Pulse test: Pulse width = $300\mu s$, Duty cycle $\leq 2.0\%$.

This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate 1 with gate 2 at ac ground. Δ Gps is defined as the change in G_{ps} from the value at V_{GG} = 7.0 Volts (3N211) and V_{GG} = 6.0 Volts (3N213). Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G_C.


(3) (4) (5) (6)



High-reliability discrete products and engineering services since 1977


MECHANICAL CHARACTERISTICS

Case:	TO-72
Marking:	Body painted, alpha-numeric
Pin out:	See below

	TO-72			
	Inches		Millim	eters
	Min	Max	Min	Max
Α		0.230		5.840
В	(2)	0.195	(74)	4.950
С		0.210	9	5.330
D	(4)	0.021	188 L	0.530
E	-	0.030		0.760
F		0.019	-	0.480
G	0.100 BSC		2.540 BSC	
Н	-	0.046	-	1.170
J	-	0.048		1.220
К	0.500		12.700	1
L	0.250		200	6.350
М	45° BSC		45° E	BSC
Ν	0.050	0.050 BDC		BSC
Р	12	0.050	746	1.270

3N211-3N213

DUAL GATE MOSFET VHF AMPLIFIER