

MJ13333

NPN SILICON POWER TRANSISTOR

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector emitter voltage	V _{CEO}	400	Vdc
Collector emitter voltage	V _{CEV}	700	Vdc
Emitter base voltage	V _{EB}	6.0	Vdc
Collector current			
-Continuous	Ic	20	Adc
-Peak ⁽¹⁾	I _{CM}	30	
Base current			
-Continuous	I _B	10	Adc
-Peak ⁽¹⁾	I _{BM}	15	
Total power dissipation @ T _C = 25°C		175	W
Total power dissipation @ T _C = 100°C	P_D	100	W
Derate above 25°C		1	W/°C
Operating and storage temperature range	T _J , T _{stg}	-65 to +200	°C
Thermal resistance, junction to case	Rejc	1.0	°C/W
Maximum lead temperature for soldering purposes: 1/8" from case for 5 seconds	T _L	275	°C

Note 1: Pulse test: pulse width = 5ms, duty cycle ≤ 10%.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	OFF CHARACTERISTICS					
Collector emitter sustaining voltage $(I_C = 100 \text{mA}, I_B = 0)$	V _{CEO(sus)}	400	-	-	Vdc	
Collector cutoff current						
$(V_{CEV} = Rated Value, V_{BE(off)} = 1.5Vdc)$	I _{CEV}	-	-	0.25	mAdc	
$(V_{CEV} = Rated Value, V_{BE(off)} = 1.5Vdc, T_C = 150^{\circ}C)$		-	-	5		
Collector cutoff current				_	۸	
$(V_{CE} = Rated V_{CEV}, R_{BE} = 50\Omega, T_C = 100^{\circ}C)$	I _{CER}	-	-	5	mAdc	
Emitter cutoff current		I _{EBO} -	-	1.0	mAdc	
$(V_{EB} = 6Vdc, I_C = 0)$	I _{EBO}					
SECOND BREAKDOWN						
Second breakdown collector current with base forward biased	I _{S/b}	Figure 12				
Clamped inductive SOA with base reverse biased	RBSOA	Figure 13				
ON CHARACTERISTICS (2)						
DC current gain $(I_C = 5Adc, V_{CE} = 5Vdc)$	h _{FE}	10	-	60	-	

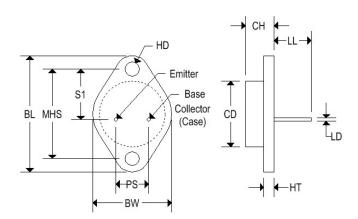
MJ13333

NPN SILICON POWER TRANSISTOR

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Ch	Symbol	Min	Тур	Max	Unit	
Collector emitter saturation	voltage					
(I _C = 10Adc, I _B = 2.0Adc)		$V_{CE(sat)}$	-	-	1.8	Vdc
$(I_C = 20 \text{Adc}, I_B = 6.7 \text{Adc})$			-	-	5.0	
$(I_C = 10Adc, I_B = 2.0Adc, T_C = 100^{\circ}C)$			-	-	2.4	
Base-emitter saturation volt	age					
$(I_C = 10Adc, I_B = 2.0Adc)$		V _{BE(sat)}	-	-	1.8	Vdc
(I _C = 10Adc, I _B = 2.0Adc, T _C = 100°C)			-	-	1.8	
DYNAMIC CHARACTERISTICS	}					
Output capacitance			125	-	500	pF
$(V_{CB} = 10Vdc, I_E = 0, f_{test} = 1.0kHz)$		C _{ob}				
SWITCHING CHARACTERISTIC	cs					
Resistive load						
Delay time		t _d	-	0.02	0.1	
Rise time	$(V_{cc} = 250Vdc, I_c = 10A,$	t _r	-	0.3	0.7	
Storage time	$I_{B1} = 2.0A$, $V_{BE(off)} = 5Vdc$, $t_p = 10\mu s$, duty cycle $\leq 2\%$)	t _s	-	1.6	4.0	μs
Fall time	τρ – 10μ3, αατή εγείε 3 270)	t _f	-	0.3	0.7	
Inductive load (clamped)					<u> </u>	J.
Storage time	$(I_C = 10A(pk), V_{clamp} = 250Vdc,$	t _{sv}		2.5	5.0	
Crossover time	$I_{B1} = 2.0A$, $V_{BE(off)} = 5Vdc$,		-	0.8		μs
Crossover time	T _C = 100°C)	t _c	-	0.8	2.0	
Storage time	$(I_C = 10A(pk), V_{clamp} = 250Vdc,$	t _{sv}	-	1.8	-	
Crossover time	$I_{B1} = 2.0A$, $V_{BE(off)} = 5Vdc$,	t _c	-	0.4	-	μs
Fall time	T _C = 25°C)	t _f	-	0.2	-	

Note 2: Pulse test: pulse width = $300\mu s$, duty cycle $\leq 2\%$.



MJ13333

NPN SILICON POWER TRANSISTOR

MECHANICAL CHARACTERISTICS

Case	TO-3
Marking	Alpha-numeric
Polarity	See below

	TO-3			
	Inches		Millim	neters
	Min	Max	Min	Max
CD	-	0.875	-	22.220
CH	0.250	0.380	6.860	9.650
HT	0.060	0.135	1.520	3.430
BW	ı	1.050	-	26.670
HD	0.131	0.188	3.330	4.780
LD	0.038	0.043	0.970	1.090
LL	0.312	0.500	7.920	12.700
BL	1.550 REF		39.370 REF	
MHS	1.177	1.197	29.900	30.400
PS	0.420	0.440	10.670	11.180
S 1	0.655	0.675	16.640	17.150

MJ13333

NPN SILICON POWER TRANSISTOR

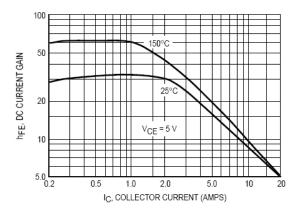


Figure 1. DC Current Gain

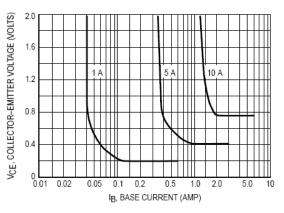


Figure 2. Collector Saturation Region

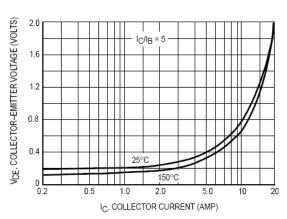


Figure 3. Collector-Emitter Saturation Region

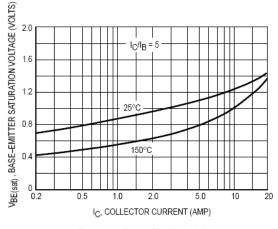


Figure 4. Base-Emitter Voltage

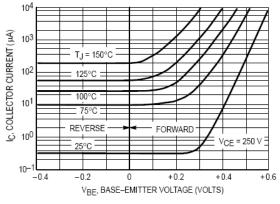


Figure 5. Collector Cutoff Region

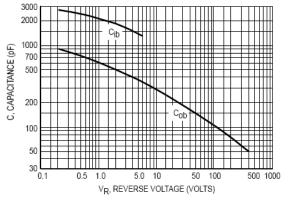


Figure 6. Capacitance

MJ13333

NPN SILICON POWER TRANSISTOR

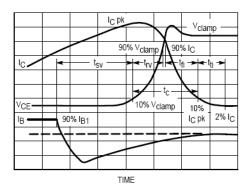


Figure 7. Inductive Switching Measurements

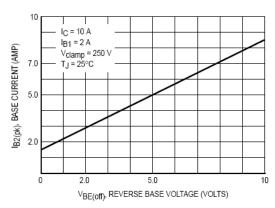


Figure 8. Reverse Base Current versus VBE(off) With No External Base Resistance

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.

t_{SV} = Voltage Storage Time, 90% I_{B1} to 10% V_{clamp}

trv = Voltage Rise Time, 10 - 90% Vclamp

t_{fi} = Current Fall Time, 90 - 10% I_C

tti = Current Tail, 10 - 2% IC

t_C = Crossover Time, 10% V_{clamp} to 10% I_C

An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms.

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222:

$$P_{SWT} = 1/2 V_{CC}I_{C}(t_{c})f$$

In general, $t_{\Gamma V}$ + $t_{fj} \simeq t_C.$ However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers, However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_C and t_{SV}) which are guaranteed at 100°C.

RESISTIVE SWITCHING PERFORMANCE

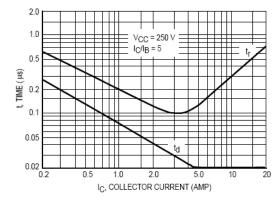
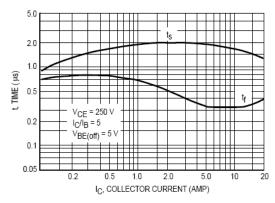
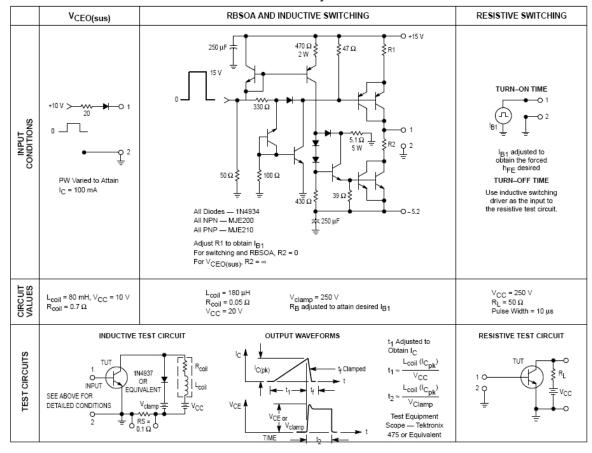


Figure 9. Turn-On Switching Times




Figure 10. Turn-Off Switching Times

MJ13333

NPN SILICON POWER TRANSISTOR

Table 1. Test Conditions for Dynamic Performance

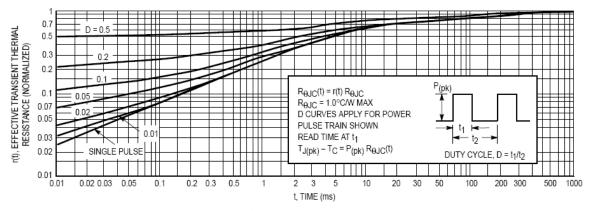


Figure 11. Thermal Response

MJ13333

NPN SILICON POWER TRANSISTOR

100 u 10 IC, COLLECTOR CURRENT (AMP) 0.2 BONDING WIRE LIMIT 0.1 THERMAL LIMIT @ TC 0.05 (SINGLE PULSE) SECOND BREAKDOWN LIMIT 0.02 0.01 0.005 50 100 350 450 600 VCF, COLLECTOR-EMITTER VOLTAGE (VOLTS)

Figure 12. Forward Bias Safe Operating Area

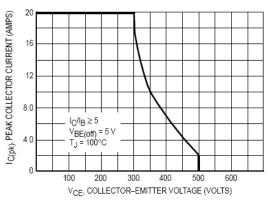


Figure 13. RBSOA, Reverse Bias Switching Safe Operating Area

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 12 is based on $T_C = 25^{\circ}C$. $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 14.

 $T_{J(pk)}$ may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the complete RBSOA characteristics.

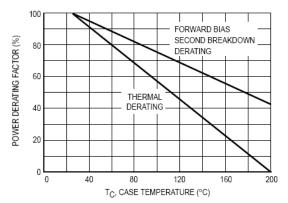


Figure 14. Power Derating