

High-reliability discrete products and engineering services since 1977

MCR218 SERIES

SILICON CONTROLLED RECTIFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS.

Rating	Symbol	Value	Unit
Peak repetitive off-state voltage ⁽¹⁾			
(T _J = -40 to +125°C, gate open)			
MCR218-2		50	
MCR218-3	V_{DRM}	100	
MCR218-4	V DRM V _{RRM}	200	V
MCR218-6	V RRM	400	
MCR218-7		500	
MCR218-8		600	
MCR218-10		800	
On-state RMS current (180° conduction angles, T _C = 70°C)	I _{T(RMS)}	8.0	Α
Peak non-repetitive surge current			•
(one half-cycle, sine wave, $60Hz$, $T_J = 125$ °C)	I _{TSM}	100	Α
Circuit fusing consideration (t = 8.3ms)	l ² t	26	A ² s
Forward peak gate power (pulse width $\leq 1.0 \mu s$, $T_C = 70 ^{\circ}C$)	P _{GM}	5	W
Forward average gate power (t = 8.3ms, T _C = 70°C)	P _{G(AV)}	0.5	W
Forward peak gate current (pulse width ≤ 1.0μs, T _C = 70°C)	I _{GM}	2.0	Α
Operating temperature range	T _J	-40 to +125	°C
Storage temperature range	T _{stg}	-40 to +150	°C

Note 1: V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

THERMAL CHARACTERISTICS

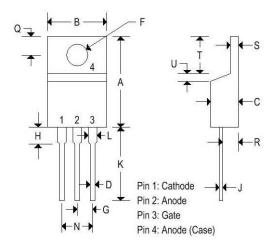
Characteristic	Symbol	Maximum	Unit
Thermal resistance, junction to case	R _{eJC}	2.0	°C/W
Maximum lead temperature for soldering purposes 1/8" from case for 10s	T _L	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-	'		
Peak forward or reverse blocking current					
$(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}, \text{ gate open})$	I _{DRM} ,				
$T_J = 25$ °C	I _{RRM}	-	-	10	μΑ
$T_J = 125^{\circ}C$		-	-	2.0	mA
ON CHARACTERISTICS			•		
Peak on-state voltage [*] (I _{TM} = 16A peak)	V _{TM}	-	1.5	1.8	V
Gate trigger current (continuous dc) $(V_D = 12V, R_L = 100\Omega)$	I _{GT}	-	10	25	mA
Gate trigger voltage (continuous dc) $(V_D = 12V, R_L = 100\Omega)$	V _{GT}	-	-	1.5	V

High-reliability discrete products and engineering services since 1977

MCR218 SERIES

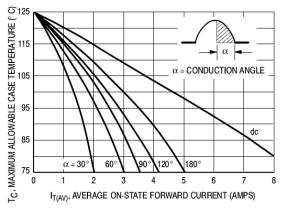

SILICON CONTROLLED RECTIFIERS

Gate non-trigger voltage (Rated 12V, $R_L = 100\Omega$, $T_J = 125$ °C)	V_{GD}	0.2	-	-	V
Holding current (V _D = 12V, initiating current = 200mA, gate open)	I _H	-	16	30	mA
DYNAMIC CHARACTERISTICS					
Critical rate of rise of off-state voltage $(V_D = \text{rated } V_{DRM}, \text{ exponential waveform, gate open, } T_J = 125 ^{\circ}\text{C})$	dv/dt	-	100	-	V/µs

^{*} Pulse width≤ 1.0ms, duty cycle ≤ 2%.

MECHANICAL CHARACTERISTICS

Case:	TO-220AB
Marking:	Body painted, alpha-numeric
Pin out:	See below


	TO-220 A B			
	Inches		Millin	neters
	Min	Max	Min	Max
Α	0.575	0.620	14.600	15.750
В	0.380	0.405	9.650	10.290
С	0.160	0.190	4.060	4.820
D	0.025	0.035	0.640	0.890
F	0.142	0.147	3.610	3.730
G	0.095	0.105	2.410	2.670
Н	0.110	0.155	2.790	3.930
J	0.014	0.022	0.360	0.560
K	0.500	0.562	12.700	14.270
L	0.045	0.055	1.140	1.390
N	0.190	0.210	4.830	5.330
Q	0.100	0.120	2.540	3.040
R	0.080	0.110	2.040	2.790
S	0.045	0.055	1.140	1.390
T	0.235	0.255	5.970	6.480
U	-	0.050	18	1.270
٧	0.045	20	1.140	F-27
Z	-	0.080	18	2.030

High-reliability discrete products and engineering services since 1977

MCR218 SERIES

SILICON CONTROLLED RECTIFIERS

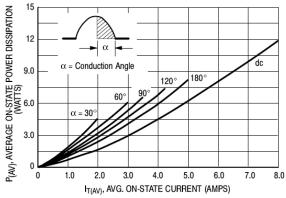
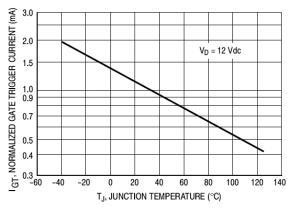



Figure 1. Current Derating

Figure 2. On-State Power Dissipation

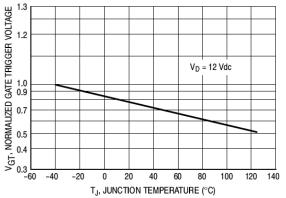


Figure 3. Typical Gate Trigger Current versus Temperature

Figure 4. Typical Gate Trigger Voltage versus Temperature

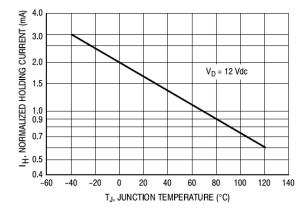


Figure 5. Typical Holding Current versus Temperature