

High-reliability discrete products and engineering services since 1977

2N5671, 2N5672

NPN HIGH POWER SILICON TRANSISTORS

FEATURES

Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Ratings	Symbol	2N5671	2N5672	Units
Collector-Base Voltage	V _{CBO}	120	150	Vdc
Collector-Emitter Voltage	nitter Voltage V _{CEO} 90 120		Vdc	
Emitter-Base Voltage	V _{EBO}	7.0		Vdc
Base Current	IB	10		Adc
Collector Current	Ic	30		Adc
Total Power Dissipation @ T _C = 25°C ⁽¹⁾	P _T	140		W
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C
Maximum Thermal Resistance, Junction to Case	R _{θJC}	1.25 °C,		°C/W

Note 1: Derate linearly 800mW/°C for T_C > 25°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristics		Symbol	Min.	Max.	Unit
Collector-Emitter Sustaining Voltage	2N5671	V _{CEO(SUS)}	90	-	V
$(I_C = 200 \text{mA}, I_B = 0)$	2N5672	▼ CEO(SUS)	120	-	v
Collector-Emitter Saturation Voltage		$V_{CE(sat)}$			Vdc
$(I_C = 15.0A, I_B = 1.2A)$		V CE(sat)	-	0.75	vuc
Base-Emitter Saturation Voltage		$V_{BE(sat)}$			Vdc
(I _C = 15.0A, I _B = 1.2A)		▼ BE(sat)	-	1.5	Vuc
Collector Cutoff Current		1			mA
$(V_{CE} = 80V, I_B = 0)$		I _(CEO)	-	10	IIIA
Collector Cutoff Current					
$(V_{CE} = 2V, I_C = 15A)$					
$(V_{CE} = 5V, I_C = 20A)$		H _{FE}	20	100	-
			20	-	
Emitter Cutoff Current					να Λ
$(V_{EB} = 7.0V, I_C = 0)$		I _{EBO}	-	10	mA
DC Current Gain					
$(I_C = 0.5A, V_{CE} = 5.0V)$	2N5671		50	-	
	2N5672		30	-	
$(I_C = 2.0A, V_{CE} = 5.0V)$	2N5671	h _{FE}	50	200	-
	2N5672		30	150	
$(I_C = 12A, V_{CE} = 5.0V)$	2N5671		15	-	
$(I_C = 10A, V_{CE} = 5.0V)$	2N5672		15	-	
Transition Frequency		f⊤			MHz
(I _C = 2.0A, V _{CE} = 10 V, f = 1.0 MHz)			40	-	
SWITCHING CHARACTERISTICS			1		
Turn-On Time		t _{on}			μs
$V_{CC} = 30V$, $I_C = 15A$, $I_{B1} = -I_{B2} = 1.2A$, $t_p = 0.1$ ms		Con	-	0.5	μ3
Storage Time		t _s			μs
$V_{CC} = 30V$, $I_C = 15A$, $I_{B1} = -I_{B2} = 1.2A$, $t_p = 0.1ms$		L _S	-	1.5	μο
Fall Time		t _f			us
$V_{CC} = 30V$, $I_C = 15A$, $I_{B1} = -I_{B2} = 1.2A$, $t_p = 0.1ms$		Lf	-	0.5	μs

High-reliability discrete products and engineering services since 1977

MECHANICAL CHARACTERISTICS

Case:	TO-3	
Marking:	Alpha-Numeric	
Polarity:	See below	

BL MHS CD Collector (Case)

2N5671, 2N5672

NPN HIGH POWER SILICON TRANSISTORS

	TO-3					
	Inches		Millimeters			
	Min	Max	Min	Max		
CD	- 15/	0.875	-	22.220		
CH	0.250	0.380	6.860	9.650		
HT	0.060	0.135	1.520	3.430		
BW	-	1.050	-	26.670		
HD	0.131	0.188	3.330	4.780		
LD	0.038	0.043	0.970	1.090		
LL	0.312	0.500	7.920	12.700		
BL	1.550 REF		39.370 REF			
MHS	1.177	1.197	29.900	30.400		
PS	0.420	0.440	10.670	11.180		
S1	0.655	0.675	16.640	17.150		