

2N4904-2N4906

PNP SILICON MEDIUM POWER TRANSISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

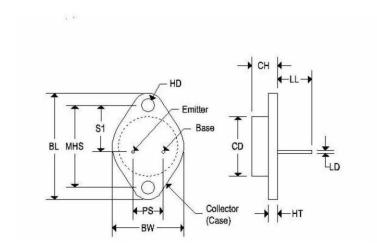
MAXIMUM RATINGS

Rating	Symbol	2N4904	2N4905	2N4906	Unit
Collector-emitter voltage	V _{CEO}	40	60	80	Vdc
Collector-base voltage	V _{CB}	40	60	80	Vdc
Emitter-base voltage	V_{EB}	5.0			Vdc
Collector current – continuous	lc	5.0			Adc
Base current	I _B	1.0			Adc
Total device dissipation T _C = 25°C	Pn	87.5			Watts
Derate above 25°C	FU	0.5			W/°C
Operating and storage junction temperature range	T _J , T _{stg}	-65 to +200			°C
Thermal resistance, junction to case	Өлс	2.0			°C/W

ELECTRICAL CHARACTERSITICS (T_A = 25°C unless otherwise specified)

Characteristics		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	<u>.</u>				
Collector emitter sustaining voltage					
$(I_C = 0.2Adc, I_B = 0)$	2N4904		40	-	Vdc
	2N4905	B _{VCEO(sus)}	60	-	vac
	2N4906		80	-	
Collector cutoff current					۸ .1 .
$(V_{CE} = Rated V_{CEO}, I_B = 0)$		I _{CEO}	-	1.0	mAdc
Collector cutoff current					
(V_{CE} = Rated V_{CEO} , $V_{BE(off)}$ = 1.5Vdc)		I _{CEX}	-	1.0	mAdc
(V_{CE} = Rated V_{CEO} , $V_{BE(off)}$ = 1.5Vdc, T_C = 150°C)			-	2.0	
Collector cutoff current .				mAdc	
$(V_{CB} = Rated V_{CB}, I_E = 0)$		I _{CBO}	-	1.0	made
Emitter cutoff current					mAdc
$(V_{EB} = 5.0Vdc, I_C = 0)$		I _{EBO}	-	1.0	
ON CHARACTERISTICS					
DC current gain (1)					
$(I_C = 2.5 Adc, V_{CE} = 2.0 Vdc)$		h_{FE}	25	100	-
$(I_C = 5.0 Adc, V_{CE} = 2.0 Vdc)$			7.0	-	
Collector emitter saturation voltage					
$(I_C = 2.5 Adc, I_B = 250 mAdc)$		$V_{CE(sat)}$	-	1.0	Vdc
$(I_C = 5.0 Adc, I_B = 1.0 Adc)$			-	1.5	
Base emitter saturation voltage				Vdc	
(I _C = 2.5Adc, V _{CE} = 2.0Adc)		$V_{BE(sat)}$	-	1.4	vac
SMALL SIGNAL CHARACTERISTICS	<u>.</u>		•		•
rrent gain - bandwidth product				N.41.1-	
$(I_C = 1.0Adc, V_{CE} = 10Vdc, f = 1.0MHz)$		f⊤	4.0	-	MHz

2N4904-2N4906

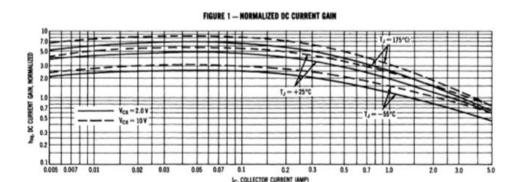

PNP SILICON MEDIUM POWER TRANSISTORS

ELECTRICAL CHARACTERSITICS (T_A = 25°C unless otherwise specified)

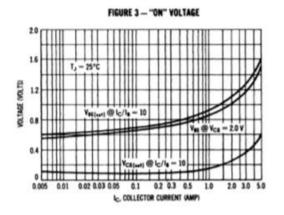
Characteristics	Symbol	Min	Max	Unit
Small signal current gain	h _{fe}			
$(I_C = 500 \text{mAdc}, V_{CE} = 10 \text{Vdc}, f = 1.0 \text{kHz})$		20	-	-

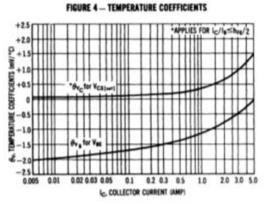
MECHANICAL CHARACTERISTICS

Case	TO-3		
Marking	Alpha-numeric		
Polarity	See below		



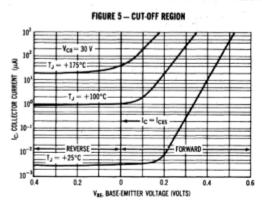
	TO-3				
	Inches		Millin	neters	
	Min	Max	Min	Max	
CD	-	0.875	-	22.220	
CH	0.250	0.380	6.860	9.650	
HT	0.060	0.135	1.520	3.430	
BW	-	1.050	-	26.670	
HD	0.131	0.188	3.330	4.780	
LD	0.038	0.043	0.970	1.090	
LL	0.312	0.500	7.920	12.700	
BL	1.550	1.550 REF		39.370 REF	
MHS	1.177	1.197	29.900	30.400	
PS	0.420	0.440	10.670	11.180	
S1	0.655	0.675	16.640	17.150	




2N4904-2N4906

PNP SILICON MEDIUM POWER TRANSISTORS

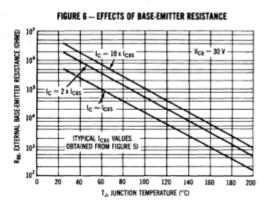
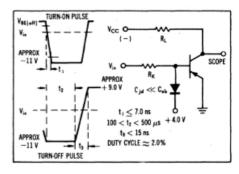
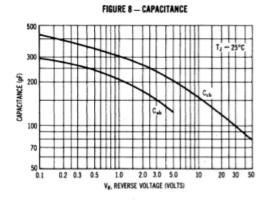
FIGURE 2 — COLLECTOR SATURATION REGION 20 15 16 17, -25°C 17, -25°C 18, BASE CURRENT (mA) 18, BASE CURRENT (mA)

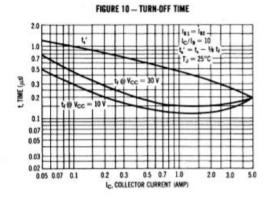


2N4904-2N4906

PNP SILICON MEDIUM POWER TRANSISTORS

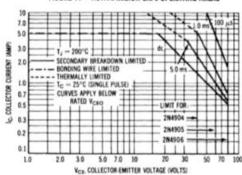
TYPICAL "OFF" REGION CHARACTERISTICS


FIGURE 7 - SWITCHING TIME EQUIVALENT CIRCUIT

Ic. COLLECTOR CURRENT (AMP)

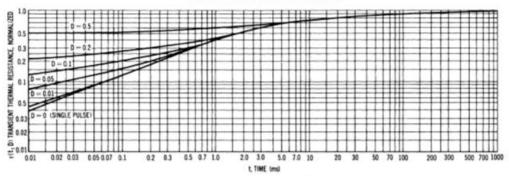
FIGURE 9 -TURN-ON TIME

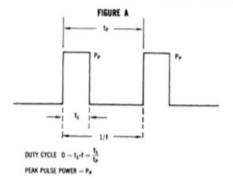


2N4904-2N4906

PNP SILICON MEDIUM POWER TRANSISTORS

RATING AND THERMAL DATA


FIGURE 11 - ACTIVE-REGION SAFE OPERATING AREAS


There are two limitations on the power handling ability of a transistor: junction temperature and secondary breakdown. Safe operating area curves indicate I_c—V_G limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on $T_{J[\mu\lambda]}\equiv 200^{\circ}\text{C}$; T_{c} is variable depending on conditions. Pulse curves are valid for duty cycles to $10\,\%$ provided $T_{J[\mu\lambda]}\equiv 200^{\circ}\text{C}$. $T_{J[\mu\lambda]}$ may be calculated from the data in Figure 12. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

FIGURE 12 — TRANSIENT THERMAL RESISTANCE

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

A train of periodical power pulses can be represented by the model shown in Figure A. Using the model and the device thermal response, the normalized effective transient thermal resistance of Figure 12 was calculated for various duty cycles.

To find $\theta_{SC}(t)$, multiply the value obtained from Figure 12 by the steady state value θ_{SC} .

Example:

The 2N4904 is dissipating 100 watts under the following conditions: $t_i=0.1$ ms, $t_F=0.5$ ms. (D = 0.2)

Using Figure 12, at a pulse width of 0.1 ms and D \approx 0.2, the reading of r $(t_{\rm 1},D$) is 0.27.

The peak rise in junction temperature is therefore $\Delta T = r(t) \times P_P \times \theta_{JC} = 0.27 \times 100 \times 2.0 = 54 ^{\circ}C$