

Semiconductors
High-reliability discrete products and engineering services since 1977

BUX10

NPN POWER TRANSISTOR

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Characteristic	Symbol	BUX10	Unit
Collector-Base Voltage ($\mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{\text {cbo }}$	160	V
Collector-Emitter Voltage ($\mathrm{V}_{\text {BE }}=-1.5 \mathrm{~V}$)	$\mathrm{V}_{\text {cex }}$	160	V
Collector-Emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {ceo }}$	125	V
Emitter-Base Voltage ($\mathrm{IC}_{\mathrm{C}}=0$)	$\mathrm{V}_{\text {EBO }}$	7.0	V
Collector Current - continuous Peak	Ic	$\begin{aligned} & 25 \\ & 30 \\ & \hline \end{aligned}$	A
Base Current -continuous	I_{B}	5.0	A
Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	150	W
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	ReJC	1.17	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Characteristic	Symbol	Min	Typ	Max	Unit
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\right)$	Iceo	-	-	1.5	mA
Collector Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=160 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=-1.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=160 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=-1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	Icex			$\begin{aligned} & 1.5 \\ & 6.0 \end{aligned}$	mA
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=5.0 \mathrm{~V}, \mathrm{IC}=0\right)$	Iebo	-	-	1	mA
Collector-Emitter Sustaining Voltage ${ }^{(1)}$ $\left(\mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {ceo(sus) }}$	125	-	-	V
Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0, \mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {Ebo }}$	7	-	-	V
Collector-Emitter Saturation Voltage ${ }^{(1)}$ $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=2 \mathrm{~A}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$		$\begin{aligned} & 0.3 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.2 \end{aligned}$	V
Base-Emitter Saturation Voltage $\left(I_{C}=20 A, I_{B}=2 A\right)$	$\mathrm{V}_{\text {BE(sat) }}$	-	1.6	2.0	V
DC Current Gain $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4.0 \mathrm{~V}\right) \end{aligned}$	$h_{\text {FE }}$	$\begin{aligned} & 20 \\ & 10 \\ & \hline \end{aligned}$		60	-
Second Breakdown Collector Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=48 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}\right) \end{aligned}$	$1 \mathrm{~s} / \mathrm{b}$	5			A
Transition Frequency $\left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}\right.$)	f_{T}	8	-	-	MHz
Turn-On Time	$\mathrm{t}_{\text {on }}$	-	0.5	1.5	$\mu \mathrm{s}$
Storage Time $\quad \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{cc}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=2 \mathrm{~A}$	$\mathrm{t}_{\text {s }}$	-	0.6	1.2	$\mu \mathrm{s}$
Fall Time	tf	-	0.15	0.3	$\mu \mathrm{s}$
Clamped $\mathrm{E}_{\mathrm{s} / \mathrm{b}}$ Collector Current $\mathrm{V}_{\text {clamp }}=125 \mathrm{~V}, \mathrm{~L}=500 \mu \mathrm{~h}$		20	-	-	A

Note 1: Pulse test: Pulse width $\leq 300 \mu \mathrm{~s}$. Duty cycle $\leq 2 \%$.

Semiconductors
High-reliability discrete products and engineering services since 1977

NPN POWER TRANSISTOR

MECHANICAL CHARACTERISTICS

Case:	TO-3
Marking:	Alpha-Numeric
Polarity:	See below

	TO-3			
	Inches		Millimeters	
	Min	Max	Min	Max
CD	-	0.875	-	22.220
CH	0.250	0.380	6.860	9.650
HT	0.060	0.135	1.520	3.430
BW	-	1.050	-	26.670
HD	0.131	0.188	3.330	4.780
LD	0.038	0.043	0.970	1.090
LL	0.312	0.500	7.920	12.700
BL	1.550	REF	39.370	REF
MHS	1.177	1.197	29.900	30.400
PS	0.420	0.440	10.670	11.180
S1	0.655	0.675	16.640	17.150

