

High-reliability discrete products and engineering services since 1977

SC143

SILICON BIDIRECTIONAL THYRISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Repetitive peak off-stage voltage, gate open			
SC143B		200	
SC143D	V_{DRM}	400	Volts
SC143E		500	
SC143M		600	
RMS on-state current (T _C = 80°C)	I _{T(RMS)}	8	Amps
Peak non-repetitive surge current (One Cycle, 60Hz)	I _{TSM}	120	Amps
Circuit fusing considerations	l ² t		A ² s
(t = 1.0ms)	11	20	A S
Critical rate of rise of on-state current	di/dt	10	A/μs
Peak gate power (pulse width = 10μs)	P _{GM}	10	Watts
Average gate power (T _C = 80°C, t = 8.3ms)	P _{G(AV)}	0.5	Watts
Peak gate current (pulse width = 10μs)	I _{GM}	3.5	Amps
Operating junction temperature range	Tı	-40 to +100	°C
Storage temperature range	T_{stg}	-40 to +125	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal resistance, junction to case	$R_{\Theta JC}$	2.2	°C/W

ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ and either polarity of MT2 to MT1 voltage unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak off state current (1)					
(V _D = V _{DRM} , gate open)					mA
T _C = 25°C	I _{DRM}	-	-	0.1	IIIA
$T_C = 100$ °C		-	-	0.5	
Peak on-state voltage (1)					
(I _{TM} = 11A peak, pulse width ≤ 1 ms, duty cycle ≤ 2%)	V_{TM}	-	-	1.55	Volts
(I _{TM} = 17A peak, pulse width ≤ 1 ms, duty cycle ≤ 2%)		-	-	1.65	
Critical rate of rise of off-state voltage (1)	4.74				\//
$(V_D = Rated V_{DRM}, gate open, exponential waveform, T_C = 100°C)$	dv/dt	-	150	-	V/µs
Critical rate of rise of commutating voltage (1)					
$(I_{T(RMS)} = Rated RMS current on state current, V_{DRM} = Rated peak off state voltage, gate open, commutating di/dt = 4.3A/ms, T_C = 80^{\circ}C)$	dv/dt(c)	4	-	-	V/µs

High-reliability discrete products and engineering services since 1977

SC143

SILICON BIDIRECTIONAL THYRISTORS

DC gate trigger current (continuous dc) (2)					
$(V_D = 12V, \text{trigger mode})$					
$MT2(+)$, $G(+)$, $R_1 = 100\Omega$				50	
$MT2(-), G(-), R_L = 100\Omega$		_	_	50	
$MT2(+), G(-), R_1 = 50\Omega$	I _{GT}	_	_	50	mA
$MT2(+), G(+), R_1 = 50\Omega, T_C = -40^{\circ}C$		_	_	80	
MT2(-), G(-), R ₁ = 50Ω , T _C = -40° C		_	_	80	
		_	-		
MT2(+), G(-), $R_L = 25\Omega$, $T_C = -40^{\circ}C$		-	-	80	
DC gate trigger voltage (continuous dc) (2)	V_{GT}				Volts
(V _D = 12V, trigger mode)					
$MT2(+), G(+), R_L = 100\Omega$		-	-	2.5	
$MT2(-), G(-), R_L = 100\Omega$		-	-	2.5	
$MT2(+), G(-), R_L = 50\Omega$		-	-	2.5	
MT2(+), G(+), $R_L = 50\Omega$, $T_C = -40^{\circ}C$		-	-	3.5	
MT2(-), G(-), $R_L = 50\Omega$, $T_C = -40^{\circ}C$		-	-	3.5	
MT2(+), G(-), $R_L = 25\Omega$, $T_C = -40^{\circ}C$		-	-	3.5	
MT2(+), G(+), $R_L = 1000\Omega$, $T_C = 100^{\circ}C^{(3)}$		0.20	-	-	
MT2(-), G(-), $R_L = 1000\Omega$, $T_C = 100^{\circ}C^{(3)}$		0.20	-	-	
MT2(+), G(-), $R_L = 1000\Omega$, $T_C = 100^{\circ}C^{(3)}$		0.20	-	-	
MT2(-), G(+), $R_L = 1000\Omega$, $T_C = 100^{\circ}C^{(3)}$		0.20	-	-	
Holding current (1)	I _H				mA
(main terminal voltage = 24V, peak initiating current = 0.5A, pulse width = 1ms, duty cycle \leq 2%, gate trigger source = 7V, 20Ω , $T_c = 25$ °C)		-	-	50	
(main terminal voltage = 24V, peak initiating current = 0.5A, pulse width = 1ms, duty cycle \leq 2%, gate trigger source = 7V, 20Ω , $T_c = -40^{\circ}C$)		-	-	100	
Latching current (2)	Ι _L				mA
(main terminal voltage = 24V, gate trigger source = 15V, 100Ω, trigger mode)					
MT2(+), G(+)		-	-	100	
MT2(-), G(-)		-	-	100	
MT2(+), G(-)		-	-	200	
MT2(+), G(+), T _C = -40°C		-	-	200	
MT2(-), G(-), $T_c = -40^{\circ}C$		-	-	200	
MT2(+), G(-), T _c = -40°C		-	-	400	
Note 1: Values apply for either polarity of Main Terminal 2 characteristics referenced to Main Terminal 1.		1		l	

Note 1: Values apply for either polarity of Main Terminal 2 characteristics referenced to Main Terminal 1. Note 2: Main Terminal 1 is the reference terminal.

Note 3: With $V_{\text{\scriptsize D}}$ equal to rated off-state voltage.

High-reliability discrete products and engineering services since 1977

MECHANICAL CHARACTERISTICS

Case	TO-220AB
Marking	Alpha-numeric
Pin out	See below

SC143

SILICON BIDIRECTIONAL THYRISTORS

	TO-220AB			
	Inc	Inches		eters
	Min	Max	Min	Max
Α	0.575	0.620	14.600	15.750
В	0.380	0.405	9.650	10.290
С	0.160	0.190	4.060	4.820
D	0.025	0.035	0.640	0.890
F	0.142	0.147	3.610	3.730
G	0.095	0.105	2.410	2,670
Н	0.110	0.155	2.790	3.930
J	0.014	0.022	0.360	0.560
K	0.500	0.562	12.700	14.270
L	0.045	0.055	1.140	1.390
N	0.190	0.210	4.830	5.330
Q	0.100	0.120	2.540	3.040
R	0.080	0.110	2.040	2.790
S	0.045	0.055	1.140	1.390
T	0.235	0.255	5.970	6.480
U		0.050	197	1.270
٧	0.045		1.140	
Z		0.080	-	2.030