
Creating integration connectors

http://docs.kentico.com 1

1.
2.

i.
ii.

iii.

3.
4.

5.

You can add integration connector classes into your application in two ways:

In a separate project (assembly)
In the App_Code folder

Creating connectors in a separate project

Create a project in Visual Studio (for example name it).Class Library CustomIntegrationConnector
Add references to the Kentico libraries:

If the connector project is standalone, install the NuGet package (see Kentico.Libraries Using the Kentico API
 for details).externally

If you are adding the connector project to your Kentico solution, reference the DLL files directly:
Right-click the project and select Add reference...
Click Browse...
Add at least the following references from the project's directory:Lib

CMS.Base
CMS.DataEngine
CMS.DocumentEngine
CMS.Helpers
CMS.SiteProvider
CMS.Synchronization
CMS.SynchronizationEngine
CMS.WorkflowEngine

Edit and rename the default class in the project and set the class to inherit from .BaseIntegrationConnector
Override the method and set the property within this method.Init() ConnectorName

The value of the property must match the code name of the connector object registered in the ConnectorName
administration interface.

using CMS.Synchronization;
using CMS.SynchronizationEngine;

public class CMSIntegrationConnector : BaseIntegrationConnector
{
 /// <summary>
 /// Initializes the connector name.
 /// </summary>
 public override void Init()
 {
 // Initializes the connector name (must match the code name of the
connector object in the system)
 // GetType().Name uses the name of the class as the
ConnectorName
 ConnectorName = GetType().Name;
 }
}

Build the solution.

With the connector class prepared, you now need to:

Implement and/or synchronizationoutgoing incoming
Register the connector in the system

https://docs.kentico.com/display/K10/Using+the+Kentico+API+externally
https://docs.kentico.com/display/K10/Using+the+Kentico+API+externally
https://docs.kentico.com/display/K10/Implementing+outgoing+synchronization
https://docs.kentico.com/display/K10/Implementing+incoming+synchronization

Creating integration connectors

http://docs.kentico.com 2

1.
2.
3.
4.
5.

6.

1.
2.
3.
4.

5.

Creating connectors in the App_Code folder

Open your Kentico web project in Visual Studio (using the or file).WebSite.sln WebApp.sln
Create a new class in the folder (or on web application installations).App_Code Old_App_Code
Set the class to inherit from BaseIntegrationConnector.
Override the method and set the property within this method.Init() ConnectorName
Ensure that the system loads the appropriate class when working with the connector using the RegisterCustomClass
assembly attribute. See for more information.Loading custom classes from App_Code

using CMS;

[assembly: RegisterCustomClass("CMSIntegrationConnector", typeof
(CMSIntegrationConnector))]

On web application projects, build the solution.

With the connector class prepared, you now need to:

Implement and/or synchronizationoutgoing incoming
Register the connector in the system

You can find an example of a basic connector class on the page.Example - Integration connector

Registering connectors in the system

Once the connector's class is ready, you need to register the connector as an object in the system:

In the Kentico administration interface, open the application.Integration bus
Select the tab.Connectors
Click .New connector
Fill in the , and and select the check box.Display name Assembly name Class Enabled

Property Description

Display
name

The name of the connector displayed in the user interface.

Code
name

Sets a unique identifier for the connector. Must match the value of the property ConnectorName
declared in the connector's class.

Provider
class

Specifies the class where the connector class is implemented:

Assembly name - the assembly (project) containing the connector class. Select for (custom classes)
connectors implemented in the App_Code (or Old_App_Code) folder.
Class - the exact class (including any namespaces) that defines the functionality of the connector.
For App_Code classes, the value must match the first parameter of the RegisterCustomClass
attribute that loads the class.

Enabled Indicates if the connector logs and processes integration tasks. Logging and processing of tasks must
also be in .enabled Settings -> Integration -> Integration bus

Click .Save

Note: You cannot create your connectors in the folder if you wish to synchronize incoming tasks from App_Code
external applications logged directly using the API (without a custom communication service). In these scenarios, the
external application must be able to reference the connector class, which requires a separate project (and DLL).

https://docs.kentico.com/display/K10/Loading+custom+classes+from+App_Code
https://docs.kentico.com/display/K10/Implementing+outgoing+synchronization
https://docs.kentico.com/display/K10/Implementing+incoming+synchronization
https://docs.kentico.com/display/K10/Example+-+Integration+connector
https://docs.kentico.com/display/K10/Enabling+the+integration+bus

Creating integration connectors

http://docs.kentico.com 3

The system displays a warning icon () next to connectors that are not registered correctly. The most common causes of
problems are:

The value of the property in the connector class's method does not match the .ConnectorName Init Code name
Incorrect assembly or class name.
App_Code classes are not loaded correctly. See for more information.Loading custom classes from App_Code

Note: When you add, edit or delete a connector, the system re-initializes all defined connectors.

https://docs.kentico.com/display/K10/Loading+custom+classes+from+App_Code

	Creating integration connectors

