

High-reliability discrete products and engineering services since 1977

MJ410, MJ411

NPN POWER TRANSISTORS

FEATURES

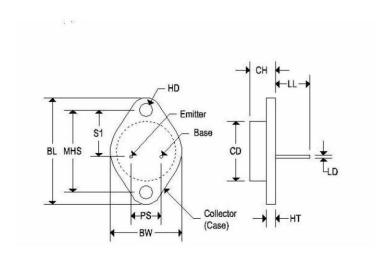
- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Characteristic	Symbol	MJ410	MJ411	Unit
Collector-Emitter Voltage	V _{CEO}	200	300	V
Collector-Emitter Voltage	V _{CBO}	200	300	V
Emitter-Base Voltage	V _{EBO}	5.0		V
Collector Current – continuous	Ic	5.0		Α
Peak	Ісм	10		
Base Current -continuous	I _B	2.0		А
Total Power Dissipation @ T _C = 75°C	PD	100		W
Derate Above 25°C	PD	1.33		W/°C
Operating Junction Temperature Range	T _J -65 to +150		°C	
Storage Temperature Range	T _{stg}	-65 to +200		°C
Thermal Resistance, Junction to Case	R _{eJC}	0.75		°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Characteristic		Symbol	Min	Max	Unit
Collector-Emitter Sustaining Voltage	MJ410	.,	200	-	
$(I_C = 100 \text{mA}, I_B = 0)$	MJ411	V _{CEO(sus)}	300	-	V
Collector Cutoff Current					
$(V_{CE} = 200V, I_B = 0)$	MJ410	I _{CEO}	-	0.25	mA
$(V_{CE} = 300V, I_B = 0)$	MJ411		-	0.25	
Collector Cutoff Current					
$(V_{CE} = 200V, V_{BE(off)} = 1.5V,, T_{C} = 125^{\circ}C)$	MJ410	I _{CEX}	-	0.5	mA
$(V_{CE} = 300V, V_{BE(off)} = 1.5V, T_C = 125^{\circ}C)$	MJ411		-	0.5	
Emitter Cutoff Current		I _{EBO}			mA
$(V_{EB} = 5.0V, I_C = 0)$			-	5.0	
DC Current Gain					
$(I_C = 1.0A, V_{CE} = 5.0V)$		h _{FE}	30	90	-
$(I_C = 2.5A, V_{CE} = 5.0V)$			10	-	
Collector-Emitter Saturation Voltage		.,			.,
$(I_C = 1.0A, I_B = 0.1A)$		$V_{CE(sat)}$	-	0.8	V
Base-Emitter Saturation Voltage		V _{BE(sat)}			V
$(I_C = 1.0A, I_B = 0.1A)$	$1.0A$, $I_B = 0.1A$)		-	5.0	V
Current Gain – Bandwidth Product		-			DALL-
(I _C = 200mA, V _{CE} = 10V, f = 1.0MHz)		F⊤	2.5	-	MHz


High-reliability discrete products and engineering services since 1977

MJ410, MJ411

NPN POWER TRANSISTORS

MECHANICAL CHARACTERISTICS

Case:	TO-3
Marking:	Alpha-Numeric
Polarity:	See below

	TO-3							
	Inches		Millimeters					
	Min	Max	Min	Max				
CD	-	0.875		22.220				
CH	0.250	0.380	6.860	9.650				
HT	0.060	0.135	1.520	3.430				
BW		1.050	•	26.670				
HD	0.131	0.188	3.330	4.780				
LD	0.038	0.043	0.970	1.090				
LL	0.312	0.500	7.920	12.700				
BL	1.550 REF		39.370 REF					
MHS	1.177	1.197	29.900	30.400				
PS	0.420	0.440	10.670	11.180				
S1	0.655	0.675	16.640	17.150				

High-reliability discrete products and engineering services since 1977

MJ410, MJ411

NPN POWER TRANSISTORS

FIGURE 1 - ACTIVE REGION SAFE OPERATING AREA

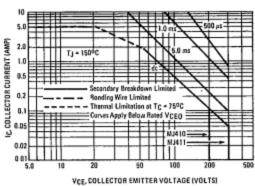


FIGURE 2 - DC CURRENT GAIN

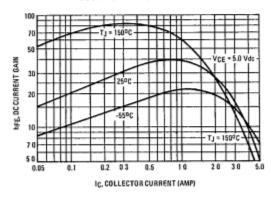


FIGURE 3 - "ON" VOLTAGES

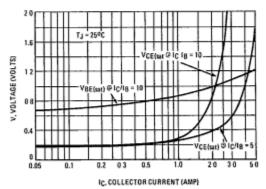


FIGURE 4 - SUSTAINING VOLTAGE TEST LOAD LINE

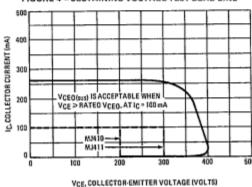
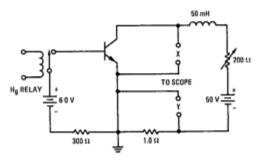



FIGURE 5 - SUSTAINING VOLTAGE TEST CIRCUIT

