

High-reliability discrete products and engineering services since 1977

COMPLEMENTARY SILICON POWER TRANSISTORS

FEATURES:

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number
- Available Non-RoHS (standard) or RoHS compliant (add PBF suffix)

MAXIMUM RATINGS

Ratings	Symbol	2N5883 2N5885	2N5884 2N5886	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	V
Collector-Base Voltage	V _{CBO}	60	80	V
Emitter-Base Voltage	V _{EBO}	5		V
Collector Current -Continuous Peak	Ic	25 50		А
Base Current	IB	7.5		А
Total Power Dissipation Derate above 25°C	PD	200		W W/°C
Operating and Storage Temperature Range	T _{J,} T _{STG}	-65 to +200		°C
Thermal Resistance Junction to Case	R _{θJC}	0.875		°C/W

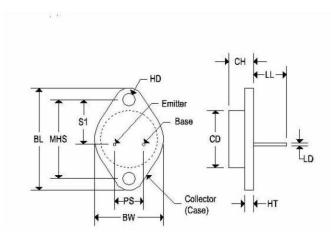
ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted

Characteristics	Symbol	Min	Max	Unit	
Collector Emitter Sustaining Voltage					
I _C = 200mA, I _B = 0	2N5883, 2N5885	V _{CEO(sus)}	60	-	V
	2N5884, 2N5886		80	-	
Collector Cutoff Current					
$V_{CE} = 30V, I_{B} = 0$	2N5883, 2N5885	I _{CEO}	-	2.0	mA
$V_{CE} = 40V, I_{B} = 0$	2N5884, 2N5886		-	2.0	
Collector Cutoff Current					
$V_{CE} = 60V, V_{BE(off)} = 1.5V$	2N5883, 2N5885		-	1.0	
V _{CE} = 80V, V _{BE(off)} = 1.5V	2N5884, 2N5886	ICEX	-	1.0	mA
$V_{CE} = 60V, V_{BE(off)} = 1.5V, T_{C} = 150^{\circ}C$	2N5883, 2N5885		-	10	
V_{CE} = 80V, $V_{BE(off)}$ = 1.5V, T_{C} = 150°C	2N5884, 2N5886		-	10	
Collector Cutoff Current					
V _{CE} = 60V, I _E = 1.5V	2N5883, 2N5885	I _{CBO}	-	1.0	mA
V _{CE} = 80V, I _E = 1.5V	2N5884, 2N5886		-	1.0	
Emitter Cutoff Current					
$V_{EB} = 5.0V, I_{C} = 0$		I _{EBO}	-	1.0	mA
DC Current Gain ⁽¹⁾					
$I_C = 3A, V_{CE} = 4V$		h _{FE}	35	-	-
$I_{C} = 10A, V_{CE} = 4V$			20	100	
I _C = 25A, V _{CE} = 4V			4.0	-	
Collector-Emitter Saturation Voltage ⁽¹⁾					
I _C = 15A, I _B = 1.5A		V _{CE(sat)}	-	1.0	V
I _C = 25A, I _B = 6.25A			-	4.0	
Base-Emitter On- Voltage		M			v
$I_{C} = 10A$, $V_{CE} = 4.0A$		V _{BE(ON)}	-	1.5	v

High-reliability discrete products and engineering services since 1977

COMPLEMENTARY SILICON POWER TRANSISTORS

ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted

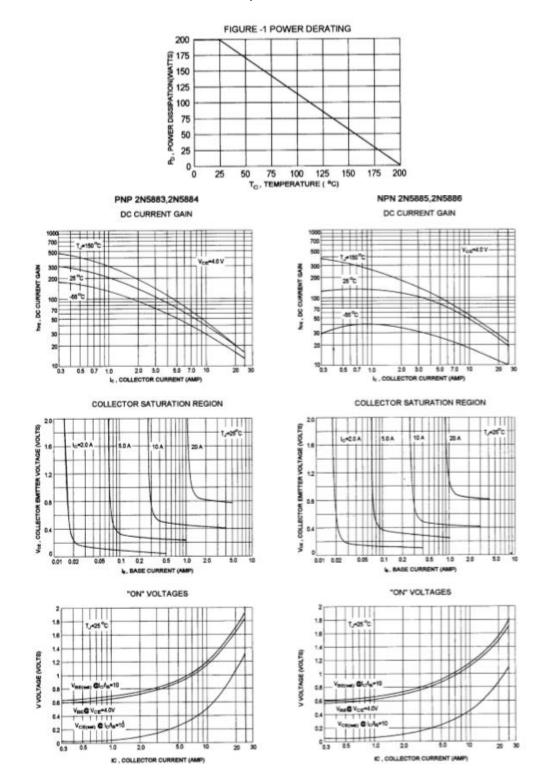

Characteristics	Symbol	Min	Max	Unit
Base-Emitter Saturation Voltage I _C = 25A, I _B = 6.25A	V _{BE(ON)}	-	2.5	v
Current Gain – Bandwidth Product ⁽²⁾ I _C = 1.0A, V _{CE} = 4.0V, f _{test} = 1.0MHz	fT	4.0	-	MHz
Small Signal Current Gain $I_C = 3A$, $V_{CE} = 4.0V$, $f = 1KHz$	h _{fe}	20	-	-

Note 1: Pulse width = 350 μ s, duty cycle \leq 0.02 Note 2: f_T = $|h_{fe}|$ ° f_{test}

Note 2: $f_T = |h_{fe}|^{\circ} f_{test}$

MECHANICAL CHARACTERISTICS

Case	TO-3
Marking	Alpha-numeric
Pin out	See below

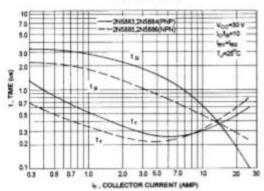


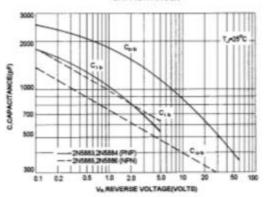
	TO-3			
	Inches		Millin	neters
	Min	Max	Min	Max
CD	-	0.875		22.220
CH	0.250	0.380	6.860	9.650
HT	0.060	0.135	1.520	3.430
BW		1.050		26.670
HD	0.131	0.188	3.330	4.780
LD	0.038	0.043	0.970	1.090
LL	0.312	0.500	7.920	12.700
BL	1.550 REF		39.370 REF	
MHS	1.177	1.197	29.900	30.400
PS	0.420	0.440	10.670	11.180
S1	0.655	0.675	16.640	17.150

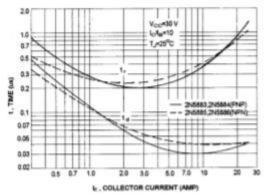
High-reliability discrete products and engineering services since 1977

COMPLEMENTARY SILICON POWER TRANSISTORS

High-reliability discrete products and engineering services since 1977


COMPLEMENTARY SILICON POWER TRANSISTORS





CAPACITANCES

