

MBR2015CTL-MBR2030CTL

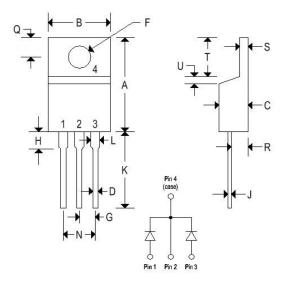
20A SCHOTTKY RECTIFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

IVIAAIIVIUIVI RATINGS	,	1		
Rating	Symbol	MBR2015CTL	MBR2030CTL	Unit
Peak repetitive reverse voltage	V_{RRM}			
Working peak reverse voltage	V_{RWM}	15	30	V
DC blocking voltage	V _R			
Average rectified forward current	I _{F(AV)}	10		А
Non-repetitive peak surge current	1	150		Α
(surge applied at rated load conditions, halfwave, single phase, 60Hz)	I _{FSM}	150		A
Peak repetitive reverse surge current (2.0µs, 1.0kHz)	I _{RRM}	1.0		Α
Operating junction temperature range	Tı	-65 to +150		°C
Storage temperature range	T_{stg}	-65 to +175		°C
Voltage rate of change (Rated V _R)	dv/dt	10000		V/μs
Maximum thermal resistance	Rejc			°C/W
Junction to case	Neic	2.0		C/ W


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Parameter	Symbol	MBR2015CTL	MBR2030CTL	Unit
Maximum instantaneous forward voltage (1)				
$(I_F = 10A, T_C = 25^{\circ}C)$		0.	52	
$(I_F = 10A, T_C = 150^{\circ}C)$	V_{F}	0.	40	V
$(I_F = 20A, T_C = 25^{\circ}C)$		0.	58	
$(I_F = 20A, T_C = 150^{\circ}C)$		0.	48	
Maximum instantaneous reverse current (1)				
(Rated dc voltage, T _C = 25°C)		5	.0	0
(Rated dc voltage, T _C = 100°C)	IR	4	0	mA
(Rated dc voltage, T _C = 125°C)		7	5	

MECHANICAL CHARACTERISTICS

Case	TO-220AB	
Marking	Alpha-numeric	
Pin out	Cathode band	

MBR2015CTL-MBR2030CTL

20A SCHOTTKY RECTIFIERS

	ТО-220АВ				
	Inches		Millimeters		
	Min	Max	Min	Max	
Α	0.570	0.620	14.480	15.750	
В	0.380	0.405	9.660	10.280	
С	0.160	0.190	4.070	4.820	
D	0.025	0.035	0.640	0.880	
F	0.142	0.147	3.610	3.730	
G	0.095	0.105	2.420	2.660	
Н	0.110	0.155	2.800	3.930	
J	0.018	0.025	0.460	0.640	
K	0.500	0.562	12.700	14.270	
L	0.045	0.060	1.150	1.520	
N	0.190	0.210	4.830	5.330	
Q	0.100	0.120	2.540	3.040	
R	0.080	0.110	2.040	2.790	
S	0.045	0.055	1.150	1.390	
T	0.235	0.255	5.970	6.470	
U	-	0.050	-	1.270	

MBR2015CTL-MBR2030CTL

20A SCHOTTKY RECTIFIERS

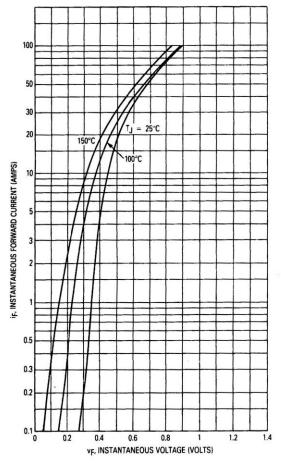


Figure 1. Typical Forward Voltage (Per Leg)

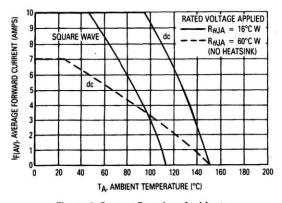


Figure 4. Current Derating, Ambient

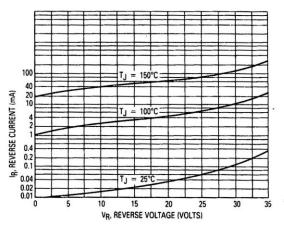


Figure 2. Typical Reverse Current (Per Leg)

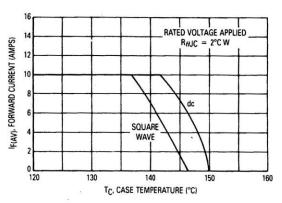


Figure 3. Current Derating, Case

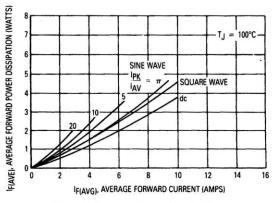


Figure 5. Forward Power Dissipation

MBR2015CTL-MBR2030CTL

20A SCHOTTKY RECTIFIERS

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 6.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

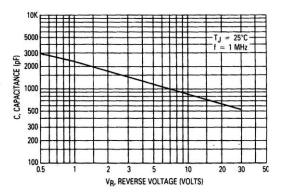


Figure 6. Typical Capacitance

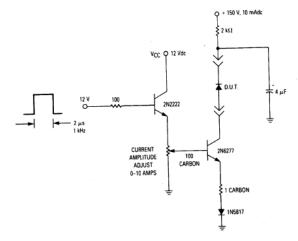


Figure 7. Test Circuit for dv/dt and Reverse Surge Current